Global stability of an SEIR epidemic model with vaccination

2016 ◽  
Vol 09 (06) ◽  
pp. 1650082 ◽  
Author(s):  
Lili Wang ◽  
Rui Xu

In this paper, an SEIR epidemic model with vaccination is formulated. The results of our mathematical analysis indicate that the basic reproduction number plays an important role in studying the dynamics of the system. If the basic reproduction number is less than unity, it is shown that the disease-free equilibrium is globally asymptotically stable by comparison arguments. If it is greater than unity, the system is permanent and there is a unique endemic equilibrium. In this case, sufficient conditions are established to guarantee the global stability of the endemic equilibrium by the theory of the compound matrices. Numerical simulations are presented to illustrate the main results.

2014 ◽  
Vol 07 (04) ◽  
pp. 1450041
Author(s):  
Jinhu Xu ◽  
Wenxiong Xu ◽  
Yicang Zhou

A delayed SEIR epidemic model with vertical transmission and non-monotonic incidence is formulated. The equilibria and the threshold of the model have been determined on the bases of the basic reproduction number. The local stability of disease-free equilibrium and endemic equilibrium is established by analyzing the corresponding characteristic equations. By comparison arguments, it is proved that, if R0 < 1, the disease-free equilibrium is globally asymptotically stable. Whereas, the disease-free equilibrium is unstable if R0 > 1. Moreover, we show that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions are obtained for the global asymptotic stability of the endemic equilibrium when R0 > 1.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yao Chen ◽  
Mei Yan ◽  
Zhongyi Xiang

A two-city SIR epidemic model with transport-related infections is proposed. Some good analytical results are given for this model. If the basic reproduction numberℜ0γ≤1, there exists a disease-free equilibrium which is globally asymptotically stable. There exists an endemic equilibrium which is locally asymptotically stable if the basic reproduction numberℜ0γ>1. We also show the permanence of this SIR model. In addition, sufficient conditions are established for global asymptotic stability of the endemic equilibrium.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Xiaohong Tian ◽  
Rui Xu

We investigate the stability of an SIR epidemic model with stage structure and time delay. By analyzing the eigenvalues of the corresponding characteristic equation, the local stability of each feasible equilibrium of the model is established. By using comparison arguments, it is proved when the basic reproduction number is less than unity, the disease free equilibrium is globally asymptotically stable. When the basic reproduction number is greater than unity, sufficient conditions are derived for the global stability of an endemic equilibrium of the model. Numerical simulations are carried out to illustrate the theoretical results.


2015 ◽  
Vol 08 (02) ◽  
pp. 1550027 ◽  
Author(s):  
Aadil Lahrouz

An epidemic model with a class of nonlinear incidence rates and distributed delay is analyzed. The nonlinear incidence is used to describe the saturated or the psychological effect of certain serious epidemics on the community when the number of infectives is getting larger. The distributed delay is derived to describe the dynamics of infectious diseases with varying immunity. Lyapunov functionals are used to show that the disease-free equilibrium state is globally asymptotically stable when the basic reproduction number is less than or equal to one. Moreover, it is shown that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions under which the endemic equilibrium is locally and globally asymptotically stable are obtained.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Maoxing Liu ◽  
Xinjie Fu ◽  
Jie Zhang ◽  
Donghua Zhao

In this paper, we propose a susceptible-infected-susceptible (SIS) epidemic model with demographics on heterogeneous metapopulation networks. We analytically derive the basic reproduction number, which determines not only the existence of endemic equilibrium but also the global dynamics of the model. The model always has the disease-free equilibrium, which is globally asymptotically stable when the basic reproduction number is less than unity and otherwise unstable. We also provide sufficient conditions on the global stability of the unique endemic equilibrium. Numerical simulations are performed to illustrate the theoretical results and the effects of the connectivity and diffusion. Furthermore, we find that diffusion rates play an active role in controlling the spread of infectious diseases.


2016 ◽  
Vol 09 (05) ◽  
pp. 1650068 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Yasir Khan ◽  
Sehra Khan ◽  
Saeed Islam

This study considers SEIVR epidemic model with generalized nonlinear saturated incidence rate in the host population horizontally to estimate local and global equilibriums. By using the Routh–Hurwitz criteria, it is shown that if the basic reproduction number [Formula: see text], the disease-free equilibrium is locally asymptotically stable. When the basic reproduction number exceeds the unity, then the endemic equilibrium exists and is stable locally asymptotically. The system is globally asymptotically stable about the disease-free equilibrium if [Formula: see text]. The geometric approach is used to present the global stability of the endemic equilibrium. For [Formula: see text], the endemic equilibrium is stable globally asymptotically. Finally, the numerical results are presented to justify the mathematical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
El Mehdi Lotfi ◽  
Mehdi Maziane ◽  
Khalid Hattaf ◽  
Noura Yousfi

The aim of this paper is to study the dynamics of a reaction-diffusion SIR epidemic model with specific nonlinear incidence rate. The global existence, positivity, and boundedness of solutions for a reaction-diffusion system with homogeneous Neumann boundary conditions are proved. The local stability of the disease-free equilibrium and endemic equilibrium is obtained via characteristic equations. By means of Lyapunov functional, the global stability of both equilibria is investigated. More precisely, our results show that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than or equal to unity, which leads to the eradication of disease from population. When the basic reproduction number is greater than unity, then disease-free equilibrium becomes unstable and the endemic equilibrium is globally asymptotically stable; in this case the disease persists in the population. Numerical simulations are presented to illustrate our theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Hai-Feng Huo ◽  
Li-Xiang Feng

An epidemic model with incomplete treatment and vaccination for the newborns and susceptibles is constructed. We establish that the global dynamics are completely determined by the basic reproduction numberR0. IfR0≤1, then the disease-free equilibrium is globally asymptotically stable. IfR0>1, the endemic equilibrium is globally asymptotically stable. Some numerical simulations are also given to explain our conclusions.


2015 ◽  
Vol 08 (06) ◽  
pp. 1550082 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Yasir Khan ◽  
Qaiser Badshah ◽  
Saeed Islam

In this paper, an SEIVR epidemic model with generalized incidence and preventive vaccination is considered. First, we formulate the model and obtain its basic properties. Then, we find the equilibrium points of the model, the disease-free and the endemic equilibrium. The stability of disease-free and endemic equilibrium is associated with the basic reproduction number [Formula: see text]. If the basic reproduction number [Formula: see text], the disease-free equilibrium is locally as well as globally asymptotically stable. Moreover, if the basic reproduction number [Formula: see text], the disease is uniformly persistent and the unique endemic equilibrium of the system is locally as well as globally asymptotically stable under certain conditions. Finally, the numerical results justify the analytical results.


Sign in / Sign up

Export Citation Format

Share Document