scholarly journals Global Dynamics of an SIQR Model with Vaccination and Elimination Hybrid Strategies

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
El Mehdi Lotfi ◽  
Mehdi Maziane ◽  
Khalid Hattaf ◽  
Noura Yousfi

The aim of this paper is to study the dynamics of a reaction-diffusion SIR epidemic model with specific nonlinear incidence rate. The global existence, positivity, and boundedness of solutions for a reaction-diffusion system with homogeneous Neumann boundary conditions are proved. The local stability of the disease-free equilibrium and endemic equilibrium is obtained via characteristic equations. By means of Lyapunov functional, the global stability of both equilibria is investigated. More precisely, our results show that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than or equal to unity, which leads to the eradication of disease from population. When the basic reproduction number is greater than unity, then disease-free equilibrium becomes unstable and the endemic equilibrium is globally asymptotically stable; in this case the disease persists in the population. Numerical simulations are presented to illustrate our theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Hai-Feng Huo ◽  
Li-Xiang Feng

An epidemic model with incomplete treatment and vaccination for the newborns and susceptibles is constructed. We establish that the global dynamics are completely determined by the basic reproduction numberR0. IfR0≤1, then the disease-free equilibrium is globally asymptotically stable. IfR0>1, the endemic equilibrium is globally asymptotically stable. Some numerical simulations are also given to explain our conclusions.


2015 ◽  
Vol 08 (06) ◽  
pp. 1550082 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Yasir Khan ◽  
Qaiser Badshah ◽  
Saeed Islam

In this paper, an SEIVR epidemic model with generalized incidence and preventive vaccination is considered. First, we formulate the model and obtain its basic properties. Then, we find the equilibrium points of the model, the disease-free and the endemic equilibrium. The stability of disease-free and endemic equilibrium is associated with the basic reproduction number [Formula: see text]. If the basic reproduction number [Formula: see text], the disease-free equilibrium is locally as well as globally asymptotically stable. Moreover, if the basic reproduction number [Formula: see text], the disease is uniformly persistent and the unique endemic equilibrium of the system is locally as well as globally asymptotically stable under certain conditions. Finally, the numerical results justify the analytical results.


2013 ◽  
Vol 18 (2) ◽  
pp. 250-263 ◽  
Author(s):  
Rui Xu

A mathematical model describing the transmission dynamics of an infectious disease with an exposed (latent) period, relapse and a saturation incidence rate is investigated. By analyzing the corresponding characteristic equations, the local stability of a disease-free equilibrium and an endemic equilibrium is established. By using suitable Lyapunov functionals and LaSalle’s invariance principle, it is proven that if the basic reproduction number is less than unity, the diseasefree equilibrium is globally asymptotically stable and therefore the disease fades out; and if the basic reproduction number is greater than unity, the endemic equilibrium is globally asymptotically stable and the disease becomes endemic.


2010 ◽  
Vol 03 (03) ◽  
pp. 299-312 ◽  
Author(s):  
SHU-MIN GUO ◽  
XUE-ZHI LI ◽  
XIN-YU SONG

In this paper, an age-structured SEIS epidemic model with infectivity in incubative period is formulated and studied. The explicit expression of the basic reproduction number R0 is obtained. It is shown that the disease-free equilibrium is globally asymptotically stable if R0 < 1, at least one endemic equilibrium exists if R0 > 1. The stability conditions of endemic equilibrium are also given.


2016 ◽  
Vol 09 (05) ◽  
pp. 1650068 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Yasir Khan ◽  
Sehra Khan ◽  
Saeed Islam

This study considers SEIVR epidemic model with generalized nonlinear saturated incidence rate in the host population horizontally to estimate local and global equilibriums. By using the Routh–Hurwitz criteria, it is shown that if the basic reproduction number [Formula: see text], the disease-free equilibrium is locally asymptotically stable. When the basic reproduction number exceeds the unity, then the endemic equilibrium exists and is stable locally asymptotically. The system is globally asymptotically stable about the disease-free equilibrium if [Formula: see text]. The geometric approach is used to present the global stability of the endemic equilibrium. For [Formula: see text], the endemic equilibrium is stable globally asymptotically. Finally, the numerical results are presented to justify the mathematical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xamxinur Abdurahman ◽  
Ling Zhang ◽  
Zhidong Teng

We derive a discretized heroin epidemic model with delay by applying a nonstandard finite difference scheme. We obtain positivity of the solution and existence of the unique endemic equilibrium. We show that heroin-using free equilibrium is globally asymptotically stable when the basic reproduction numberR0<1, and the heroin-using is permanent when the basic reproduction numberR0>1.


2014 ◽  
Vol 07 (04) ◽  
pp. 1450041
Author(s):  
Jinhu Xu ◽  
Wenxiong Xu ◽  
Yicang Zhou

A delayed SEIR epidemic model with vertical transmission and non-monotonic incidence is formulated. The equilibria and the threshold of the model have been determined on the bases of the basic reproduction number. The local stability of disease-free equilibrium and endemic equilibrium is established by analyzing the corresponding characteristic equations. By comparison arguments, it is proved that, if R0 < 1, the disease-free equilibrium is globally asymptotically stable. Whereas, the disease-free equilibrium is unstable if R0 > 1. Moreover, we show that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions are obtained for the global asymptotic stability of the endemic equilibrium when R0 > 1.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Kai Wang ◽  
Xueliang Zhang ◽  
Zhidong Teng ◽  
Lei Wang ◽  
Liping Zhang

A patch model for echinococcosis due to dogs migration is proposed to explore the effect of dogs migration among patches on the spread of echinococcosis. We firstly define the basic reproduction numberR0. The mathematical results show that the dynamics of the model can be completely determined byR0. IfR0<1, the disease-free equilibrium is globally asymptotically stable. WhenR0>1, the model is permanence and endemic equilibrium is globally asymptotically stable. According to the simulations, it is shown that the larger diffusion of dogs from the lower epidemic areas to the higher prevalence areas can intensify the spread of echinococcosis. However, the larger diffusion of dogs from the higher prevalence areas to the lower epidemic areas can reduce the spread and is beneficial for disease control.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yao Chen ◽  
Mei Yan ◽  
Zhongyi Xiang

A two-city SIR epidemic model with transport-related infections is proposed. Some good analytical results are given for this model. If the basic reproduction numberℜ0γ≤1, there exists a disease-free equilibrium which is globally asymptotically stable. There exists an endemic equilibrium which is locally asymptotically stable if the basic reproduction numberℜ0γ>1. We also show the permanence of this SIR model. In addition, sufficient conditions are established for global asymptotic stability of the endemic equilibrium.


Sign in / Sign up

Export Citation Format

Share Document