scholarly journals The vanishing cycles of curves in toric surfaces II

2019 ◽  
Vol 11 (04) ◽  
pp. 909-927 ◽  
Author(s):  
Rémi Crétois ◽  
Lionel Lang

We resume the study initiated in [R. Crétois and L. Lang, The vanishing cycles of curves in toric surfaces, I, preprint (2017), arXiv:1701.00608]. For a generic curve [Formula: see text] in an ample linear system [Formula: see text] on a toric surface [Formula: see text], a vanishing cycle of [Formula: see text] is an isotopy class of simple closed curve that can be contracted to a point along a degeneration of [Formula: see text] to a nodal curve in [Formula: see text]. The obstructions that prevent a simple closed curve in [Formula: see text] from being a vanishing cycle are encoded by the adjoint line bundle [Formula: see text]. In this paper, we consider the linear systems carrying the two simplest types of obstruction. Geometrically, these obstructions manifest on [Formula: see text] respectively as an hyperelliptic involution and as a spin structure. In both cases, we determine all the vanishing cycles by investigating the associated monodromy maps, whose target space is the mapping class group [Formula: see text]. We show that the image of the monodromy is the subgroup of [Formula: see text] preserving respectively the hyperelliptic involution and the spin structure. The results obtained here support Conjecture [Formula: see text] in [R. Crétois and L. Lang, The vanishing cycles of curves in toric surfaces, I, preprint (2017), arXiv:1701.00608] aiming to describe all the vanishing cycles for any pair [Formula: see text].

2018 ◽  
Vol 154 (8) ◽  
pp. 1659-1697 ◽  
Author(s):  
Rémi Crétois ◽  
Lionel Lang

This article is the first in a series of two in which we study the vanishing cycles of curves in toric surfaces. We give a list of possible obstructions to contract vanishing cycles within a given complete linear system. Using tropical means, we show that any non-separating simple closed curve is a vanishing cycle whenever none of the listed obstructions appears.


1992 ◽  
Vol 34 (3) ◽  
pp. 314-317 ◽  
Author(s):  
Stephen P. Humphries

LetF = F(g, n)be an oriented surface of genusg≥1withn<2boundary components and letM(F)be its mapping class group. ThenM(F)is generated by Dehn twists about a finite number of non-bounding simple closed curves inF([6, 5]). See [1] for the definition of a Dehn twist. Letebe a non-bounding simple closed curve inFand letEdenote the isotopy class of the Dehn twist aboute. LetNbe the normal closure ofE2inM(F). In this paper we answer a question of Birman [1, Qu 28 page 219]:Theorem 1.The subgroup N is of finite index in M(F).


1989 ◽  
Vol 31 (2) ◽  
pp. 213-218
Author(s):  
Stephen P. Humphries

Let F be an orientable surface with or without boundary and let M(F) be the mapping class group of F, i.e. the group of isotopy classes of orientation preserving diffeomorphisms of F. To each essential simple closed curve c on F we can associate an element C of M(F) called the Dehn twist about c. We refer the reader to [1] for definitions. It is well known (see [1]) that, at least in the case where F has no more than one boundary component, M(F) is generated by Dehn twists. Further, there are important subgroups of M(F) which are also generated by Dehn twists or simple products of Dehn twists; for example the Torelli group, the kernel of the homology action map M(F)→ Aut(H1(F;Z)) = Sp(H1(F;Z)), where Sp(H1(F;Z)) denotes the symplectic group, is known to be generated by Dehn twists about bounding curves and by “bounding pairs”. See [8] for proofs and definitions. Also Dehn twists crop up as geometric monodromy maps associated to Picard–Lefschetz vanishing cycles for plane curve singularities (see [5]).


2009 ◽  
Vol 146 (1) ◽  
pp. 109-118 ◽  
Author(s):  
YUSUKE KUNO

AbstractWe present a formula expressing Earle's twisted 1-cocycle on the mapping class group of a closed oriented surface of genus ≥ 2 relative to a fixed base point, with coefficients in the first homology group of the surface. For this purpose we compare it with Morita's twisted 1-cocycle which is combinatorial. The key is the computation of these cocycles on a particular element of the mapping class group, which is topologically a hyperelliptic involution.


1976 ◽  
Vol 19 (3) ◽  
pp. 373-374 ◽  
Author(s):  
James A. Schafer

Let T2 = S1×S1, where S1 is the unit circle, and let {α, β} be the integral basis of H1(T2) induced by the 2 S1-factors. It is well known that 0 ≠ X = pα + qβ is represented by a simple closed curve (i.e. the homotopy class αppq contains a simple closed curve) if and only if gcd(p, q) = 1. It is the purpose of this note to extend this theorem to oriented surfaces of genus g.


1960 ◽  
Vol 12 ◽  
pp. 209-230 ◽  
Author(s):  
R. H. Bing

One of the unsolved problems of plane topology is the following:Question. What are the homogeneous bounded plane continua?A search for the answer has been punctuated by some erroneous results. For a history of the problem see (6).The following examples of bounded homogeneous plane continua are known : a point; a simple closed curve; a pseudo arc (2, 12); and a circle of pseudo arcs (6). Are there others?The only one of the above examples that contains an arc is a simple closed curve. In this paper we show that there are no other such examples. We list some previous results that point in this direction. Mazurkiewicz showed (11) that the simple closed curve is the only non-degenerate homogeneous bounded plane continuum that is locally connected. Cohen showed (8) that the simple closed curve is the only homogeneous bounded plane continuum that contains a simple closed curve.


2012 ◽  
Vol 33 (5) ◽  
pp. 1584-1610
Author(s):  
JULIANA XAVIER

AbstractMichael Handel proved in [A fixed-point theorem for planar homeomorphisms. Topology38 (1999), 235–264] the existence of a fixed point for an orientation-preserving homeomorphism of the open unit disk that can be extended to the closed disk, provided that it has points whose orbits form an oriented cycle of links at infinity. Later, Patrice Le Calvez gave a different proof of this theorem based only on Brouwer theory and plane topology arguments in [Une nouvelle preuve du théorème de point fixe de Handel. Geom. Topol.10(2006), 2299–2349]. These methods improved the result by proving the existence of a simple closed curve of index 1. We give a new, simpler proof of this improved version of the theorem and generalize it to non-oriented cycles of links at infinity.


1962 ◽  
Vol 14 ◽  
pp. 21-38 ◽  
Author(s):  
W. T. Tutte

Let P be a closed region in the plane bounded by a simple closed curve, and let S be a simplicial dissection of P. We may say that S is a dissection of P into a finite number α of triangles so that no vertex of any one triangle is an interior point of an edge of another. The triangles are ‘'topological” triangles and their edges are closed arcs which need not be straight segments. No two distinct edges of the dissection join the same two vertices, and no two triangles have more than two vertices in common.


Sign in / Sign up

Export Citation Format

Share Document