scholarly journals Coarse compactifications and controlled products

2020 ◽  
pp. 1-26
Author(s):  
Tomohiro Fukaya ◽  
Shin-ichi Oguni ◽  
Takamitsu Yamauchi

We introduce the notion of controlled products on metric spaces as a generalization of Gromov products, and construct boundaries by using controlled products, which we call the Gromov boundaries. It is shown that the Gromov boundary with respect to a controlled product on a proper metric space is the ideal boundary of a coarse compactification of the space. It is also shown that there is a bijective correspondence between the set of all coarse equivalence classes of controlled products and the set of all equivalence classes of coarse compactifications.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Toufik Tiaiba ◽  
Dahmane Achour

Abstract We introduce and investigate the injective hull of the strongly Lipschitz classical p-compact operator ideal defined between a pointed metric space and a Banach space. As an application we extend some characterizations of the injective hull of the strongly Lipschitz classical p-compact from the linear case to the Lipschitz case. Also, we introduce the ideal of Lipschitz unconditionally quasi p-nuclear operators between pointed metric spaces and show that it coincides with the Lipschitz injective hull of the ideal of Lipschitz classical p-compact operators.


2018 ◽  
Vol 98 (2) ◽  
pp. 298-304 ◽  
Author(s):  
NGUYEN VAN DUNG ◽  
VO THI LE HANG

Based on the metrisation of $b$-metric spaces of Paluszyński and Stempak [‘On quasi-metric and metric spaces’, Proc. Amer. Math. Soc.137(12) (2009), 4307–4312], we prove that every $b$-metric space has a completion. Our approach resolves the limitation in using the quotient space of equivalence classes of Cauchy sequences to obtain a completion of a $b$-metric space.


1990 ◽  
Vol 120 ◽  
pp. 181-204 ◽  
Author(s):  
Takashi Shioya

In this paper we study the ideal boundaries of surfaces admitting total curvature as a continuation of [Sy2] and [Sy3]. The ideal boundary of an Hadamard manifold is defined to be the equivalence classes of rays. This equivalence relation is the asymptotic relation of rays, defined by Busemann [Bu]. The asymptotic relation is not symmetric in general. However in Hadamard manifolds this becomes symmetric. Here it is essential that the manifolds are focal point free.


2009 ◽  
Vol 19 (2) ◽  
pp. 337-355 ◽  
Author(s):  
M. ALI-AKBARI ◽  
B. HONARI ◽  
M. POURMAHDIAN ◽  
M. M. REZAII

In this paper we study quasi-metric spaces using domain theory. Our main objective in this paper is to study the maximal point space problem for quasi-metric spaces. Here we prove that quasi-metric spaces that satisfy certain completeness properties, such as Yoneda and Smyth completeness, can be modelled by continuous dcpo's. To achieve this goal, we first study the partially ordered set of formal balls (BX, ⊑) of a quasi-metric space (X, d). Following Edalat and Heckmann, we prove that the order properties of (BX, ⊑) are tightly connected to topological properties of (X, d). In particular, we prove that (BX, ⊑) is a continuous dcpo if (X, d) is algebraic Yoneda complete. Furthermore, we show that this construction gives a model for Smyth-complete quasi-metric spaces. Then, for a given quasi-metric space (X, d), we introduce the partially ordered set of abstract formal balls (BX, ⊑, ≺). We prove that if the conjugate space (X, d−1) of a quasi-metric space (X, d) is right K-complete, then the ideal completion of (BX, ⊑, ≺) is a model for (X, d). This construction provides a model for any Yoneda-complete quasi-metric space (X, d), as well as the Sorgenfrey line, Kofner plane and Michael line.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
S.M. Buckley ◽  
K. Falk

Abstract We develop the boundary theory of rough CAT(0) spaces, a class of length spaces that contains both Gromov hyperbolic length spaces and CAT(0) spaces. The resulting theory generalizes the common features of the Gromov boundary of a Gromov hyperbolic length space and the ideal boundary of a complete CAT(0) space. It is not assumed that the spaces are geodesic or proper


2010 ◽  
Vol 2010 ◽  
pp. 1-14
Author(s):  
Mark Farag ◽  
Brink van der Merwe

This paper treats near-rings of zero-preserving Lipschitz functions on metric spaces that are also abelian groups, using pointwise addition of functions as addition and composition of functions as multiplication. We identify a condition on the metric ensuring that the set of all such Lipschitz functions is a near-ring, and we investigate the complications that arise from the lack of left distributivity in the resulting right near-ring. We study the behavior of the set of invertible Lipschitz functions, and we initiate an investigation into the ideal structure of normed near-rings of Lipschitz functions. Examples are given to illustrate the results and to demonstrate the limits of the theory.


2013 ◽  
Vol 1 ◽  
pp. 200-231 ◽  
Author(s):  
Andrea C.G. Mennucci

Abstract In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3157-3172
Author(s):  
Mujahid Abbas ◽  
Bahru Leyew ◽  
Safeer Khan

In this paper, the concept of a new ?-generalized quasi metric space is introduced. A number of well-known quasi metric spaces are retrieved from ?-generalized quasi metric space. Some general fixed point theorems in a ?-generalized quasi metric spaces are proved, which generalize, modify and unify some existing fixed point theorems in the literature. We also give applications of our results to obtain fixed points for contraction mappings in the domain of words and to prove the existence of periodic solutions of delay differential equations.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 118
Author(s):  
Jelena Vujaković ◽  
Eugen Ljajko ◽  
Mirjana Pavlović ◽  
Stojan Radenović

One of the main goals of this paper is to obtain new contractive conditions using the method of a strictly increasing mapping F:(0,+∞)→(−∞,+∞). According to the recently obtained results, this was possible (Wardowski’s method) only if two more properties (F2) and (F3) were used instead of the aforementioned strictly increasing (F1). Using only the fact that the function F is strictly increasing, we came to new families of contractive conditions that have not been found in the existing literature so far. Assuming that α(u,v)=1 for every u and v from metric space Ξ, we obtain some contractive conditions that can be found in the research of Rhoades (Trans. Amer. Math. Soc. 1977, 222) and Collaco and Silva (Nonlinear Anal. TMA 1997). Results of the paper significantly improve, complement, unify, generalize and enrich several results known in the current literature. In addition, we give examples with results in line with the ones we obtained.


2020 ◽  
Vol 8 (1) ◽  
pp. 114-165
Author(s):  
Tetsu Toyoda

AbstractGromov (2001) and Sturm (2003) proved that any four points in a CAT(0) space satisfy a certain family of inequalities. We call those inequalities the ⊠-inequalities, following the notation used by Gromov. In this paper, we prove that a metric space X containing at most five points admits an isometric embedding into a CAT(0) space if and only if any four points in X satisfy the ⊠-inequalities. To prove this, we introduce a new family of necessary conditions for a metric space to admit an isometric embedding into a CAT(0) space by modifying and generalizing Gromov’s cycle conditions. Furthermore, we prove that if a metric space satisfies all those necessary conditions, then it admits an isometric embedding into a CAT(0) space. This work presents a new approach to characterizing those metric spaces that admit an isometric embedding into a CAT(0) space.


Sign in / Sign up

Export Citation Format

Share Document