NOTES ON A CURIOUS ARITHMETIC FUNCTION

2011 ◽  
Vol 04 (04) ◽  
pp. 705-714 ◽  
Author(s):  
Yuanming Zhong ◽  
Qianrong Tan

Let v2(n) denote the 2-adic valuation of any positive integer n. Recently, Farhi introduced a curious arithmetic function f defined for any positive integer n by [Formula: see text]. Farhi showed that the inequality [Formula: see text] with c = 4.01055487… holds for all positive integer n and conjectured that one can replace the upper bound cn by 4n in this inequality. In this paper, we show two identities about the product [Formula: see text] and then use it to prove partially Farhi's conjecture. Finally, we propose a conjecture from which the truth of Farhi's conjecture can be deduced. In particular, we confirm the truth of our conjecture for all positive integers n up to 100000 by using Matlab 7.1.

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Long Chen ◽  
Kaimin Cheng ◽  
Tingting Wang

Let p be an odd prime number and n be a positive integer. Let vpn, N∗, and Q+ denote the p-adic valuation of the integer n, the set of positive integers, and the set of positive rational numbers, respectively. In this paper, we introduce an arithmetic function fp:N∗⟶Q+ defined by fpn≔n/pvpn1−vpn for any positive integer n. We show several interesting arithmetic properties about that function and then use them to establish some curious results involving the p-adic valuation. Some of these results extend Farhi’s results from the case of even prime to that of odd prime.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.


2018 ◽  
Vol 8 (1) ◽  
pp. 109-114
Author(s):  
Apoloniusz Tyszka

Abstract We define a computable function f from positive integers to positive integers. We formulate a hypothesis which states that if a system S of equations of the forms xi· xj = xk and xi + 1 = xi has only finitely many solutions in non-negative integers x1, . . . , xi, then the solutions of S are bounded from above by f (2n). We prove the following: (1) the hypothesis implies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that the question of whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (3) the hypothesis implies that the question of whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (4) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, thenMis computable.


2017 ◽  
Vol 7 (1) ◽  
pp. 17-23
Author(s):  
Apoloniusz Tyszka

Abstract Let Bn = {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈ {1, . . . , n}} denote the system of equations in the variables x1, . . . , xn. For a positive integer n, let _(n) denote the smallest positive integer b such that for each system of equations S ⊆ Bn with a unique solution in positive integers x1, . . . , xn, this solution belongs to [1, b]n. Let g(1) = 1, and let g(n + 1) = 22g(n) for every positive integer n. We conjecture that ξ (n) 6 g(2n) for every positive integer n. We prove: (1) the function ξ : N \ {0} → N \ {0} is computable in the limit; (2) if a function f : N \ {0} → N \ {0} has a single-fold Diophantine representation, then there exists a positive integer m such that f (n) < ξ (n) for every integer n > m; (3) the conjecture implies that there exists an algorithm which takes as input a Diophantine equation D(x1, . . . , xp) = 0 and returns a positive integer d with the following property: for every positive integers a1, . . . , ap, if the tuple (a1, . . . , ap) solely solves the equation D(x1, . . . , xp) = 0 in positive integers, then a1, . . . , ap 6 d; (4) the conjecture implies that if a set M ⊆ N has a single-fold Diophantine representation, then M is computable; (5) for every integer n > 9, the inequality ξ (n) < (22n−5 − 1)2n−5 + 1 implies that 22n−5 + 1 is composite.


10.37236/6738 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Hojin Choi ◽  
Young Soo Kwon

In this paper, we introduce a new variation of list-colorings. For a graph $G$  and for a given nonnegative integer $t$, a $t$-common list assignment of $G$ is a mapping $L$ which assigns each vertex $v$ a set $L(v)$ of colors such that given set of $t$ colors belong to $L(v)$ for every $v\in V(G)$. The $t$-common list chromatic number of $G$ denoted by $ch_t(G)$ is defined as the minimum positive integer $k$ such that there exists an $L$-coloring of $G$ for every $t$-common list assignment $L$ of $G$, satisfying $|L(v)| \ge k$ for every vertex $v\in V(G)$. We show that for all positive integers $k, \ell$ with $2 \le k \le \ell$ and for any positive integers $i_1 , i_2, \ldots, i_{k-2}$ with $k \le i_{k-2} \le \cdots \le i_1 \le \ell$, there exists a graph $G$ such that $\chi(G)= k$, $ch(G) =  \ell$ and $ch_t(G) = i_t$ for every $t=1, \ldots, k-2$. Moreover, we consider the $t$-common list chromatic number of planar graphs. From the four color theorem and the result of Thomassen (1994), for any $t=1$ or $2$, the sharp upper bound of $t$-common list chromatic number of planar graphs is $4$ or $5$. Our first step on $t$-common list chromatic number of planar graphs is to find such a sharp upper bound. By constructing a planar graph $G$ such that $ch_1(G) =5$, we show that the sharp upper bound for $1$-common list chromatic number of planar graphs is $5$. The sharp upper bound of $2$-common list chromatic number of planar graphs is still open. We also suggest several questions related to $t$-common list chromatic number of planar graphs.


2011 ◽  
Vol 54 (2) ◽  
pp. 431-441 ◽  
Author(s):  
Shaofang Hong ◽  
Guoyou Qian

AbstractLet k ≥ 0, a ≥ 1 and b ≥ 0 be integers. We define the arithmetic function gk,a,b for any positive integer n byIf we let a = 1 and b = 0, then gk,a,b becomes the arithmetic function that was previously introduced by Farhi. Farhi proved that gk,1,0 is periodic and that k! is a period. Hong and Yang improved Farhi's period k! to lcm(1, 2, … , k) and conjectured that (lcm(1, 2, … , k, k + 1))/(k + 1) divides the smallest period of gk,1,0. Recently, Farhi and Kane proved this conjecture and determined the smallest period of gk,1,0. For the general integers a ≥ 1 and b ≥ 0, it is natural to ask the following interesting question: is gk,a,b periodic? If so, what is the smallest period of gk,a,b? We first show that the arithmetic function gk,a,b is periodic. Subsequently, we provide detailed p-adic analysis of the periodic function gk,a,b. Finally, we determine the smallest period of gk,a,b. Our result extends the Farhi–Kane Theorem from the set of positive integers to general arithmetic progressions.


1977 ◽  
Vol 20 (2) ◽  
pp. 249-254 ◽  
Author(s):  
Joel Spencer

Let n and k be positive integers, k≥3. Denote by ϕ(n, k) the least positive integer such that if F is any family of more than ϕ(n, k) sets, each set with n elements, then some k members of F have pairwise the same intersection. In this paper we obtain a new asymptotic upper bound for ϕ(n, k), k fixed, n approaching infinity.


2020 ◽  
Vol 55 (2) ◽  
pp. 195-201
Author(s):  
Maohua Le ◽  
◽  
Gökhan Soydan ◽  

Let A, B be positive integers such that min{A,B}>1, gcd(A,B) = 1 and 2|B. In this paper, using an upper bound for solutions of ternary purely exponential Diophantine equations due to R. Scott and R. Styer, we prove that, for any positive integer n, if A >B3/8, then the equation (A2 n)x + (B2 n)y = ((A2 + B2)n)z has no positive integer solutions (x,y,z) with x > z > y; if B>A3/6, then it has no solutions (x,y,z) with y>z>x. Thus, combining the above conclusion with some existing results, we can deduce that, for any positive integer n, if B ≡ 2 (mod 4) and A >B3/8, then this equation has only the positive integer solution (x,y,z)=(1,1,1).


Author(s):  
Louis H. Kauffman ◽  
Eiji Ogasa

We use the terms, knot product and local-move, as defined in the text of this paper. Let [Formula: see text] be an integer [Formula: see text]. Let [Formula: see text] be the set of simple spherical [Formula: see text]-knots in [Formula: see text]. Let [Formula: see text] be an integer [Formula: see text]. We prove that the map [Formula: see text] is bijective, where [Formula: see text]Hopf, and Hopf denotes the Hopf link. Let [Formula: see text] and [Formula: see text] be 1-links in [Formula: see text]. Suppose that [Formula: see text] is obtained from [Formula: see text] by a single pass-move, which is a local-move on 1-links. Let [Formula: see text] be a positive integer. Let [Formula: see text] denote the knot product [Formula: see text]. We prove the following: The [Formula: see text]-dimensional submanifold [Formula: see text] [Formula: see text] is obtained from [Formula: see text] by a single [Formula: see text]-pass-move, which is a local-move on [Formula: see text]-submanifolds contained in [Formula: see text]. See the body of this paper for the definitions of all local-moves in this abstract. We prove the following: Let [Formula: see text], and [Formula: see text] be positive integers. If the [Formula: see text] torus link is pass-move-equivalent to the [Formula: see text] torus link, then the Brieskorn manifolds, [Formula: see text] and [Formula: see text], are diffeomorphic as abstract manifolds. Let [Formula: see text] and [Formula: see text] be (not necessarily connected or spherical) 2-dimensional closed oriented submanifolds in [Formula: see text]. Suppose that [Formula: see text] is obtained from [Formula: see text] by a single ribbon-move, which is a local-move on 2-dimensional submanifolds contained in [Formula: see text]. Let [Formula: see text] be an integer [Formula: see text]. We prove the following: The [Formula: see text]-submanifold [Formula: see text] [Formula: see text] is obtained from [Formula: see text] by a single [Formula: see text]-pass-move, which is a local-move on [Formula: see text]-dimensional submanifolds contained in [Formula: see text].


2018 ◽  
Vol 68 (5) ◽  
pp. 975-980
Author(s):  
Zhongyan Shen ◽  
Tianxin Cai

Abstract In 2014, Wang and Cai established the following harmonic congruence for any odd prime p and positive integer r, $$\sum_{\begin{subarray}{c}i+j+k=p^{r}\\ i,j,k\in\mathcal{P}_{p}\end{subarray}}\frac{1}{ijk}\equiv-2p^{r-1}B_{p-3} \quad\quad(\text{mod} \,\, {p^{r}}),$$ where $ \mathcal{P}_{n} $ denote the set of positive integers which are prime to n. In this note, we obtain the congruences for distinct odd primes p, q and positive integers α, β, $$ \sum_{\begin{subarray}{c}i+j+k=p^{\alpha}q^{\beta}\\ i,j,k\in\mathcal{P}_{2pq}\end{subarray}}\frac{1}{ijk}\equiv\frac{7}{8}\left(2-% q\right)\left(1-\frac{1}{q^{3}}\right)p^{\alpha-1}q^{\beta-1}B_{p-3}\pmod{p^{% \alpha}} $$ and $$ \sum_{\begin{subarray}{c}i+j+k=p^{\alpha}q^{\beta}\\ i,j,k\in\mathcal{P}_{pq}\end{subarray}}\frac{(-1)^{i}}{ijk}\equiv\frac{1}{2}% \left(q-2\right)\left(1-\frac{1}{q^{3}}\right)p^{\alpha-1}q^{\beta-1}B_{p-3}% \pmod{p^{\alpha}}. $$


Sign in / Sign up

Export Citation Format

Share Document