scholarly journals The least common multiple of consecutive arithmetic progression terms

2011 ◽  
Vol 54 (2) ◽  
pp. 431-441 ◽  
Author(s):  
Shaofang Hong ◽  
Guoyou Qian

AbstractLet k ≥ 0, a ≥ 1 and b ≥ 0 be integers. We define the arithmetic function gk,a,b for any positive integer n byIf we let a = 1 and b = 0, then gk,a,b becomes the arithmetic function that was previously introduced by Farhi. Farhi proved that gk,1,0 is periodic and that k! is a period. Hong and Yang improved Farhi's period k! to lcm(1, 2, … , k) and conjectured that (lcm(1, 2, … , k, k + 1))/(k + 1) divides the smallest period of gk,1,0. Recently, Farhi and Kane proved this conjecture and determined the smallest period of gk,1,0. For the general integers a ≥ 1 and b ≥ 0, it is natural to ask the following interesting question: is gk,a,b periodic? If so, what is the smallest period of gk,a,b? We first show that the arithmetic function gk,a,b is periodic. Subsequently, we provide detailed p-adic analysis of the periodic function gk,a,b. Finally, we determine the smallest period of gk,a,b. Our result extends the Farhi–Kane Theorem from the set of positive integers to general arithmetic progressions.

2012 ◽  
Vol 86 (3) ◽  
pp. 389-404 ◽  
Author(s):  
GUOYOU QIAN ◽  
QIANRONG TAN ◽  
SHAOFANG HONG

AbstractLet k be any given positive integer. We define the arithmetic function gk for any positive integer n by We first show that gk is periodic. Subsequently, we provide a detailed local analysis of the periodic function gk, and determine its smallest period. We also obtain an asymptotic formula for log lcm0≤i≤k {(n+i)2+1}.


2014 ◽  
Vol 57 (3) ◽  
pp. 551-561 ◽  
Author(s):  
Daniel M. Kane ◽  
Scott Duke Kominers

AbstractFor relatively prime positive integers u0 and r, we consider the least common multiple Ln := lcm(u0, u1..., un) of the finite arithmetic progression . We derive new lower bounds on Ln that improve upon those obtained previously when either u0 or n is large. When r is prime, our best bound is sharp up to a factor of n + 1 for u0 properly chosen, and is also nearly sharp as n → ∞.


Author(s):  
Sid Ali Bousla

In this paper, we establish some nontrivial and effective upper bounds for the least common multiple of consecutive terms of a finite arithmetic progression. Precisely, we prove that for any two coprime positive integers [Formula: see text] and [Formula: see text], with [Formula: see text], we have [Formula: see text] where [Formula: see text]. If in addition [Formula: see text] is a prime number and [Formula: see text], then we prove that for any [Formula: see text], we have [Formula: see text], where [Formula: see text]. Finally, we apply those inequalities to estimate the arithmetic function [Formula: see text] defined by [Formula: see text] ([Formula: see text]), as well as some values of the generalized Chebyshev function [Formula: see text].


1999 ◽  
Vol 42 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Tom C. Brown ◽  
Ronald L. Graham ◽  
Bruce M. Landman

AbstractAnalogues of van derWaerden’s theorem on arithmetic progressions are considered where the family of all arithmetic progressions, AP, is replaced by some subfamily of AP. Specifically, we want to know for which sets A, of positive integers, the following statement holds: for all positive integers r and k, there exists a positive integer n = w′(k, r) such that for every r-coloring of [1, n] there exists a monochromatic k-term arithmetic progression whose common difference belongs to A. We will call any subset of the positive integers that has the above property large. A set having this property for a specific fixed r will be called r-large. We give some necessary conditions for a set to be large, including the fact that every large set must contain an infinite number of multiples of each positive integer. Also, no large set {an : n = 1, 2,…} can have . Sufficient conditions for a set to be large are also given. We show that any set containing n-cubes for arbitrarily large n, is a large set. Results involving the connection between the notions of “large” and “2-large” are given. Several open questions and a conjecture are presented.


2016 ◽  
Vol 14 (1) ◽  
pp. 146-155 ◽  
Author(s):  
Siao Hong ◽  
Shuangnian Hu ◽  
Shaofang Hong

AbstractLet f be an arithmetic function and S= {x1, …, xn} be a set of n distinct positive integers. By (f(xi, xj)) (resp. (f[xi, xj])) we denote the n × n matrix having f evaluated at the greatest common divisor (xi, xj) (resp. the least common multiple [xi, xj]) of x, and xj as its (i, j)-entry, respectively. The set S is said to be gcd closed if (xi, xj) ∈ S for 1 ≤ i, j ≤ n. In this paper, we give formulas for the determinants of the matrices (f(xi, xj)) and (f[xi, xj]) if S consists of multiple coprime gcd-closed sets (i.e., S equals the union of S1, …, Sk with k ≥ 1 being an integer and S1, …, Sk being gcd-closed sets such that (lcm(Si), lcm(Sj)) = 1 for all 1 ≤ i ≠ j ≤ k). This extends the Bourque-Ligh, Hong’s and the Hong-Loewy formulas obtained in 1993, 2002 and 2011, respectively. It also generalizes the famous Smith’s determinant.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Carlo Sanna

AbstractFor every positive integer n and for every $$\alpha \in [0, 1]$$ α ∈ [ 0 , 1 ] , let $${\mathcal {B}}(n, \alpha )$$ B ( n , α ) denote the probabilistic model in which a random set $${\mathcal {A}} \subseteq \{1, \ldots , n\}$$ A ⊆ { 1 , … , n } is constructed by picking independently each element of $$\{1, \ldots , n\}$$ { 1 , … , n } with probability $$\alpha $$ α . Cilleruelo, Rué, Šarka, and Zumalacárregui proved an almost sure asymptotic formula for the logarithm of the least common multiple of the elements of $${\mathcal {A}}$$ A .Let q be an indeterminate and let $$[k]_q := 1 + q + q^2 + \cdots + q^{k-1} \in {\mathbb {Z}}[q]$$ [ k ] q : = 1 + q + q 2 + ⋯ + q k - 1 ∈ Z [ q ] be the q-analog of the positive integer k. We determine the expected value and the variance of $$X := \deg {\text {lcm}}\!\big ([{\mathcal {A}}]_q\big )$$ X : = deg lcm ( [ A ] q ) , where $$[{\mathcal {A}}]_q := \big \{[k]_q : k \in {\mathcal {A}}\big \}$$ [ A ] q : = { [ k ] q : k ∈ A } . Then we prove an almost sure asymptotic formula for X, which is a q-analog of the result of Cilleruelo et al.


1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


2009 ◽  
Vol 05 (04) ◽  
pp. 625-634
Author(s):  
SERGEI V. KONYAGIN ◽  
MELVYN B. NATHANSON

Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a + im : i ∈ N0}. For positive integers a,b,c,d,m the sum of products set Rm(a)Rm(b) + Rm(c)Rm(d) consists of all integers of the form (a+im) · (b+jm)+(c+km)(d+ℓm) for some i,j,k,ℓ ∈ Z. It is proved that if gcd (a,b,c,d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class Rm(ab+cd), and that the sum of products set Pm(a)Pm(b)+Pm(c)Pm eventually coincides with the infinite arithmetic progression Pm(ab+cd).


2015 ◽  
Vol 58 (4) ◽  
pp. 858-868 ◽  
Author(s):  
Kenneth S. Williams

AbstractLet denote the Dedekind eta function. We use a recent productto- sum formula in conjunction with conditions for the non-representability of integers by certain ternary quadratic forms to give explicitly ten eta quotientssuch that the Fourier coefficients c(n) vanish for all positive integers n in each of infinitely many non-overlapping arithmetic progressions. For example, we show that if we have c(n) = 0 for all n in each of the arithmetic progressions


2008 ◽  
Vol 78 (3) ◽  
pp. 431-436 ◽  
Author(s):  
XUE-GONG SUN ◽  
JIN-HUI FANG

AbstractErdős and Odlyzko proved that odd integers k such that k2n+1 is prime for some positive integer n have a positive lower density. In this paper, we characterize all arithmetic progressions in which natural numbers that can be expressed in the form (p−1)2−n (where p is a prime number) have a positive proportion. We also prove that an arithmetic progression consisting of odd numbers can be obtained from a covering system if and only if those integers in such a progression which can be expressed in the form (p−1)2−n have an asymptotic density of zero.


Sign in / Sign up

Export Citation Format

Share Document