FOURIER SINE AND COSINE TRANSFORMS ON BOEHMIAN SPACES

2013 ◽  
Vol 06 (01) ◽  
pp. 1350005 ◽  
Author(s):  
R. Roopkumar ◽  
E. R. Negrin ◽  
C. Ganesan

We construct suitable Boehmian spaces which are properly larger than [Formula: see text] and we extend the Fourier sine transform and the Fourier cosine transform more than one way. We prove that the extended Fourier sine and cosine transforms have expected properties like linear, continuous, one-to-one and onto from one Boehmian space onto another Boehmian space. We also establish that the well known connection among the Fourier transform, Fourier sine transform and Fourier cosine transform in the context of Boehmians. Finally, we compare the relations among the different Boehmian spaces discussed in this paper.

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1199
Author(s):  
Juan H. Arredondo ◽  
Manuel Bernal ◽  
María Guadalupe Morales

We generalize the classic Fourier transform operator F p by using the Henstock–Kurzweil integral theory. It is shown that the operator equals the H K -Fourier transform on a dense subspace of L p , 1 < p ≤ 2 . In particular, a theoretical scope of this representation is raised to approximate the Fourier transform of functions on the mentioned subspace numerically. Besides, we show the differentiability of the Fourier transform function F p ( f ) under more general conditions than in Lebesgue’s theory. Additionally, continuity of the Fourier Sine transform operator into the space of Henstock-Kurzweil integrable functions is proved, which is similar in spirit to the already known result for the Fourier Cosine transform operator. Because our results establish a representation of the Fourier transform with more properties than in Lebesgue’s theory, these results might contribute to development of better algorithms of numerical integration, which are very important in applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Jafar Saberi-Nadjafi

In 2007, the author published some results on n-dimensional Laplace transform involved with the Fourier sine transform. In this paper, we propose some new result in n-dimensional Laplace transforms involved with Fourier cosine transform; these results provide few algorithms for evaluating some n-dimensional Laplace transform pairs. In addition, some examples are also presented, which explain the useful applications of the obtained results. Therefore, one can produce some two- and three- as well as n-dimensional Laplace transforms pairs.


2016 ◽  
Vol 47 (3) ◽  
pp. 351-356
Author(s):  
Piyush Kumar Bhandari ◽  
Sushil Kumar Bissu

By using a form of the Cauchy-Bunyakovsky-Schwarz inequality, we establish new inequalities for some classical integral transforms such as Laplace transform,Fourier transform, Fourier cosine transform, Fourier sine transform, Mellin transform and Hankel transform.


1969 ◽  
Vol 21 ◽  
pp. 942-950 ◽  
Author(s):  
C. Nasim

It is known that under special conditions, Fourier sine transforms and Fourier cosine transforms behave asymptotically like a power of x, either as x → 0 or as x → ∞ or both. For example (3),where f(x) = x–αϕ(x), 0 < α < 1, and ϕ(x) is of bounded variation in (0, ∞) and Fc(x) is the Fourier cosine transform of f(x). This suggests that other results connecting the behaviour of a function at infinity with the behaviour of its Fourier or Watson transform near the origin might exist. In this paper wre derive various such results. For example, a special case of these results iswhere f(x) is the Fourier sine transform of g(x). It should be noted that the Fourier inversion formula fails to give f(+0) directly in this case. Some applications of these results to show the relationships between various forms of known summation formulae are given.


2018 ◽  
Vol 14 (1) ◽  
pp. 1-11
Author(s):  
Charles Chinwuba Ike

Abstract The Fourier sine transform method was implemented in this study to obtain general solutions for stress and displacement fields in homogeneous, isotropic, linear elastic soil of semi-infinite extent subject to a point load applied tangentially at a point considered the origin of the half plane. The study adopted a stress based formulation of the elasticity problem. Fourier transformation of the biharmonic stress compatibility equation was done to obtain bounded stress functions for the elastic half plane problem. Stresses and boundary conditions expressed in terms of the Boussinesq-Papkovich potential functions were transformed using Fourier sine transforms. Boundary conditions were used to obtain the unknown constants of the stress functions for the Cerrutti problem considered; and the complete determination of the stress fields in the Fourier transform space. Inversion of the Fourier sine transforms for the stresses yielded the general expressions for the stresses in the physical domain space variables. The strain fields were obtained from the kinematic relations. The displacement fields were obtained by integration of the strain-displacement relations. The solutions obtained were identical with solutions in literature obtained using Cerrutti stress functions.


2018 ◽  
Vol 22 (4) ◽  
pp. 1729-1735
Author(s):  
Cheng-Dong Wei ◽  
Guang-Sheng Chen

This paper proposes a new method called the local fractional Fourier sine transform to solve fractional differential equations on a fractal space. The method takes full advantages of the Yang-Fourier transform, the local fractional Fourier cosine, and sine transforms. A 1-D local fractional heat transfer equation is used as an example to reveal the merits of the new technology, and the example can be used as a paradigm for other applications.


Author(s):  
Mohammed Abdulhameed ◽  
Garba Tahiru Adamu ◽  
Gulibur Yakubu Dauda

In this paper, we construct transient electro-osmotic flow of Burgers’ fluid with Caputo fractional derivative in a micro-channel, where the Poisson–Boltzmann equation described the potential electric field applied along the length of the microchannel. The analytical solution for the component of the velocity profile was obtained, first by applying the Laplace transform combined with the classical method of partial differential equations and, second by applying Laplace transform combined with the finite Fourier sine transform. The exact solution for the component of the temperature was obtained by applying Laplace transform and finite Fourier sine transform. Further, due to the complexity of the derived models of the governing equations for both velocity and temperature, the inverse Laplace transform was obtained with the aid of numerical inversion formula based on Stehfest's algorithms with the help of MATHCAD software. The graphical representations showing the effects of the time, retardation time, electro-kinetic width, and fractional parameters on the velocity of the fluid flow and the effects of time and fractional parameters on the temperature distribution in the micro-channel were presented and analyzed. The results show that the applied electric field, electro-osmotic force, electro-kinetic width, and relaxation time play a vital role on the velocity distribution in the micro-channel. The fractional parameters can be used to regulate both the velocity and temperature in the micro-channel. The study could be used in the design of various biomedical lab-on-chip devices, which could be useful for biomedical diagnosis and analysis.


Sign in / Sign up

Export Citation Format

Share Document