fourier sine transform
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 3)

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ying Qing Song ◽  
Aamir Farooq ◽  
Muhammad Kamran ◽  
Sadique Rehman ◽  
Muhammad Tamoor ◽  
...  

This investigation focuses on the mixed initial boundary value problem with Caputo fractional derivatives. The studied pour an incompressible fractionalized Oldroyd-B fluid prompted by fluctuating rectangular tube. The explicit expression of the velocity field and shear stresses for the fractional model are obtained by utilizing the integral transforms, i.e., double finite Fourier sine transform and Laplace transform. Furthermore, the confirmation of the analytical solutions is also analyzed by utilizing the Tzou’s and Stehfest’s algorithms in the tabular form. In limited cases, ordinary Oldroyd-B fluid similar solutions and classical Maxwell and fractional Maxwell fluid are derived. The flow field’s graphs with the influences of relevant parameters are also mentioned.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1828
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

This is a compilation of definite integrals of the product of the hyperbolic cosecant function and polynomial raised to a general power. In this work, we used our contour integral method to derive a Fourier sine transform in terms of the Lerch function. Almost all Lerch functions have an asymmetrical zero-distribution. A summary table of the results are produced for easy reading. A vast majority of the results are new.


Author(s):  
Mohammed Abdulhameed ◽  
Garba Tahiru Adamu ◽  
Gulibur Yakubu Dauda

In this paper, we construct transient electro-osmotic flow of Burgers’ fluid with Caputo fractional derivative in a micro-channel, where the Poisson–Boltzmann equation described the potential electric field applied along the length of the microchannel. The analytical solution for the component of the velocity profile was obtained, first by applying the Laplace transform combined with the classical method of partial differential equations and, second by applying Laplace transform combined with the finite Fourier sine transform. The exact solution for the component of the temperature was obtained by applying Laplace transform and finite Fourier sine transform. Further, due to the complexity of the derived models of the governing equations for both velocity and temperature, the inverse Laplace transform was obtained with the aid of numerical inversion formula based on Stehfest's algorithms with the help of MATHCAD software. The graphical representations showing the effects of the time, retardation time, electro-kinetic width, and fractional parameters on the velocity of the fluid flow and the effects of time and fractional parameters on the temperature distribution in the micro-channel were presented and analyzed. The results show that the applied electric field, electro-osmotic force, electro-kinetic width, and relaxation time play a vital role on the velocity distribution in the micro-channel. The fractional parameters can be used to regulate both the velocity and temperature in the micro-channel. The study could be used in the design of various biomedical lab-on-chip devices, which could be useful for biomedical diagnosis and analysis.


2021 ◽  
Vol 7 (2) ◽  
pp. 1615-1627
Author(s):  
Kehong Zheng ◽  
◽  
Fuzhang Wang ◽  
Muhammad Kamran ◽  
Rewayat Khan ◽  
...  

<abstract><p>This investigation aims to present the unsteady motion of second grade fluid in an oscillating duct induced by rectified sine pulses. Some of the most dominant means for solving problems in engineering, mathematics and physics are transform methods. The objective is to modify the domain of the present problem to a new domain which is easier for evaluation. Such modifications can be done by different ways, one such way is by using transforms. In present work Fourier sine transform and Laplace transform techniques are used. The solution thus obtained is in form of steady state, with combination of transient solution which fulfills all required initial and boundary conditions. The influence of various parameters of interest for both developing and retarding flows on the flow characteristics will also be sketched and discussed. Also, the problem is reduced to the flow model where side walls are absent by bringing the aspect ratio parameter (ratio of length to width) to zero.</p></abstract>


2020 ◽  
Vol 10 ◽  
pp. 88
Author(s):  
Mustapha Adewale Usman ◽  
Fatai Akangbe Hammed ◽  
Deborah O. Daniel ◽  
Sherrifat Taiwo Okusaga ◽  
Oduyomi Michael Badejo

In this paper, vibration of beam subjected to moving force and moving mass is considered. Finite Fourier Sine transform with method of undetermined coefficient is used to solve the governing partial differential equation of order four. It was found that the response amplitude increases as the mass of the load increases for the case of moving mass while the response amplitude for the case of moving mass is not affected by increase in mass of the load. Also analysis shows that the response amplitude for the case of moving force is greater than that of moving  mass.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1199
Author(s):  
Juan H. Arredondo ◽  
Manuel Bernal ◽  
María Guadalupe Morales

We generalize the classic Fourier transform operator F p by using the Henstock–Kurzweil integral theory. It is shown that the operator equals the H K -Fourier transform on a dense subspace of L p , 1 < p ≤ 2 . In particular, a theoretical scope of this representation is raised to approximate the Fourier transform of functions on the mentioned subspace numerically. Besides, we show the differentiability of the Fourier transform function F p ( f ) under more general conditions than in Lebesgue’s theory. Additionally, continuity of the Fourier Sine transform operator into the space of Henstock-Kurzweil integrable functions is proved, which is similar in spirit to the already known result for the Fourier Cosine transform operator. Because our results establish a representation of the Fourier transform with more properties than in Lebesgue’s theory, these results might contribute to development of better algorithms of numerical integration, which are very important in applications.


Sign in / Sign up

Export Citation Format

Share Document