A note on the 2-rainbow bondage numbers in graphs

2016 ◽  
Vol 09 (01) ◽  
pp. 1650013
Author(s):  
L. Asgharsharghi ◽  
S. M. Sheikholeslami ◽  
L. Volkmann

A 2-rainbow dominating function (2RDF) of a graph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text], the condition [Formula: see text] is fulfilled. The weight of a 2RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a 2RDF of [Formula: see text]. The rainbow bondage number [Formula: see text] of a graph [Formula: see text] with maximum degree at least two is the minimum cardinality of all sets [Formula: see text] for which [Formula: see text]. Dehgardi, Sheikholeslami and Volkmann, [The [Formula: see text]-rainbow bondage number of a graph, Discrete Appl. Math. 174 (2014) 133–139] proved that the rainbow bondage number of a planar graph does not exceed 15. In this paper, we generalize their result for graphs which admit a [Formula: see text]-cell embedding on a surface with non-negative Euler characteristic.

2018 ◽  
Vol 49 (2) ◽  
pp. 115-127
Author(s):  
Jafar Amjadi ◽  
Rana Khoeilar ◽  
N. Dehgardi ◽  
Lutz Volkmann ◽  
S.M. Sheikholeslami

A restrained $k$-rainbow dominating function (R$k$RDF) of a graph $G$ is a function $f$ from the vertex set $V(G)$ to the set of all subsets of the set $\{1,2,\ldots,k\}$ such that for any vertex $v \in V (G)$ with $f(v) = \emptyset$ the conditions $\bigcup_{u \in N(v)} f(u)=\{1,2,\ldots,k\}$ and $|N(v)\cap \{u\in V\mid f(u)=\emptyset\}|\ge 1$ are fulfilled, where $N(v)$ is the open neighborhood of $v$. The weight of a restrained $k$-rainbow dominating function is the value $w(f)=\sum_{v\in V}|f (v)|$. The minimum weight of a restrained $k$-rainbow dominating function of $G$ is called the restrained $k$-rainbow domination number of $G$, denoted by $\gamma_{rrk}(G)$. The restrained $k$-rainbow bondage number $b_{rrk}(G)$ of a graph $G$ with maximum degree at least two is the minimum cardinality of all sets $F \subseteq E(G)$ for which $\gamma_{rrk}(G-F) > \gamma_{rrk}(G)$. In this paper, we initiate the study of the restrained $k$-rainbow bondage number in graphs and we present some sharp bounds for $b_{rr2}(G)$. In addition, we determine the restrained 2-rainbow bondage number of some classes of graphs.


2013 ◽  
Vol 05 (01) ◽  
pp. 1350001 ◽  
Author(s):  
A. BAHREMANDPOUR ◽  
FU-TAO HU ◽  
S. M. SHEIKHOLESLAMI ◽  
JUN-MING XU

A Roman dominating function (RDF) on a graph G = (V, E) is a function f : V → {0, 1, 2} such that every vertex v ∈ V with f(v) = 0 has at least one neighbor u ∈ V with f(u) = 2. The weight of a RDF is the value f(V(G)) = Σu∈V(G) f(u). The minimum weight of a RDF on a graph G is called the Roman domination number, denoted by γR(G). The Roman bondage number bR(G) of a graph G with maximum degree at least two is the minimum cardinality of all sets E′ ⊆ E(G) for which γR(G - E′) > γR(G). In this paper, we first show that the decision problem for determining bR(G) is NP-hard even for bipartite graphs and then we establish some sharp bounds for bR(G) and characterizes all graphs attaining some of these bounds.


2017 ◽  
Vol 10 (01) ◽  
pp. 1750004 ◽  
Author(s):  
R. Khoeilar ◽  
S. M. Sheikholeslami

Let [Formula: see text] be a finite and simple digraph. A [Formula: see text]-rainbow dominating function ([Formula: see text]RDF) of a digraph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text] the condition [Formula: see text] is fulfilled, where [Formula: see text] is the set of in-neighbors of [Formula: see text]. The weight of a [Formula: see text]RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a digraph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a [Formula: see text]RDF of [Formula: see text]. The [Formula: see text]-rainbow reinforcement number [Formula: see text] of a digraph [Formula: see text] is the minimum number of arcs that must be added to [Formula: see text] in order to decrease the [Formula: see text]-rainbow domination number. In this paper, we initiate the study of [Formula: see text]-rainbow reinforcement number in digraphs and we present some sharp bounds for [Formula: see text]. In particular, we determine the [Formula: see text]-rainbow reinforcement number of some classes of digraphs.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650018 ◽  
Author(s):  
N. Dehgardi ◽  
M. Falahat ◽  
S. M. Sheikholeslami ◽  
Abdollah Khodkar

A [Formula: see text]-rainbow dominating function (2RDF) of a graph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text] the condition [Formula: see text] is fulfilled, where [Formula: see text] is the open neighborhood of [Formula: see text]. The weight of a 2RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a 2RDF of G. The [Formula: see text]-rainbow domination subdivision number [Formula: see text] is the minimum number of edges that must be subdivided (each edge in [Formula: see text] can be subdivided at most once) in order to increase the 2-rainbow domination number. It is conjectured that for any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text]. In this paper, we first prove this conjecture for some classes of graphs and then we prove that for any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text].


Author(s):  
Saeed Shaebani ◽  
Saeed Kosari ◽  
Leila Asgharsharghi

Let [Formula: see text] be a positive integer and [Formula: see text] be a simple graph. A restrained [Formula: see text]-rainbow dominating function (R[Formula: see text]RDF) of [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the family of all subsets of [Formula: see text], such that every vertex [Formula: see text] with [Formula: see text] satisfies both of the conditions [Formula: see text] and [Formula: see text] simultaneously, where [Formula: see text] denotes the open neighborhood of [Formula: see text]. The weight of an R[Formula: see text]RDF is the value [Formula: see text]. The restrained[Formula: see text]-rainbow domination number of [Formula: see text], denoted by [Formula: see text], is the minimum weight of an R[Formula: see text]RDF of [Formula: see text]. The restrained[Formula: see text]-rainbow reinforcement number [Formula: see text] of [Formula: see text], is defined to be the minimum number of edges that must be added to [Formula: see text] in order to decrease the restrained [Formula: see text]-rainbow domination number. In this paper, we determine the restrained [Formula: see text]-rainbow reinforcement number of some special classes of graphs. Also, we present some bounds on the restrained [Formula: see text]-rainbow reinforcement number of general graphs.


Filomat ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 599-607 ◽  
Author(s):  
Zehui Shao ◽  
Seyed Sheikholeslamib ◽  
Bo Wang ◽  
Pu Wu ◽  
Xiaosong Zhang

A 2-rainbow dominating function (2RDF) of a graph G is a function f : V(G) ? P({1,2}) such that for each v ? V(G) with f (v) = ? we have Uu?N(v) f (u) = {1,2}. For a 2RDF f of a graph G, the weight w(f) of f is defined as w(f)=?v?V(G)?f(v)?. The minimum weight over all 2RDFs of G is called the 2-rainbow domination number of G, which is denoted by ?r2(G). A subset S of vertices of a graph G without isolated vertices, is a total dominating set of G if every vertex in V(G) has a neighbor in S. The total domination number ?t(G) is the minimum cardinality of a total dominating set of G. Chellali, Haynes and Hedetniemi conjectured that ?t(G)? ?r2(G) [M. Chellali, T.W. Haynes and S.T. Hedetniemi, Bounds on weak Roman and 2-rainbow domination numbers, Discrete Appl. Math. 178 (2014), 27-32.], and later Furuya confirmed the conjecture [M. Furuya, A note on total domination and 2-rainbow domination in graphs, Discrete Appl. Math. 184 (2015), 229-230.]. In this paper, we provide a constructive characterization of trees T with ?r2(T) = ?t(T).


Author(s):  
Kijung Kim

Let $G$ be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. A function $f : V(G) \rightarrow \mathcal{P}(\{1, 2, \dotsc, k\})$ is a \textit{$k$-rainbow dominating function} on $G$ if for each vertex $v \in V(G)$ for which $f(v)= \emptyset$, it holds that $\bigcup_{u \in N(v)}f(u) = \{1, 2, \dotsc, k\}$. The weight of a $k$-rainbow dominating function is the value $\sum_{v \in V(G)}|f(v)|$. The \textit{$k$-rainbow domination number} $\gamma_{rk}(G)$ is the minimum weight of a $k$-rainbow dominating function on $G$. In this paper, we initiate the study of $k$-rainbow domination numbers in middle graphs. We define the concept of a middle $k$-rainbow dominating function, obtain some bounds related to it and determine the middle $3$-rainbow domination number of some classes of graphs. We also provide upper and lower bounds for the middle $3$-rainbow domination number of trees in terms of the matching number. In addition, we determine the $3$-rainbow domatic number for the middle graph of paths and cycles.


Author(s):  
L. Shahbazi ◽  
H. Abdollahzadeh Ahangar ◽  
R. Khoeilar ◽  
S. M. Sheikholeslami

Let [Formula: see text] be an integer, and let [Formula: see text] be a graph. A k-rainbow dominating function (or [Formula: see text]RDF) of [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the family of all subsets of [Formula: see text] such that for very [Formula: see text] with [Formula: see text], the condition [Formula: see text] is fulfilled, where [Formula: see text] is the open neighborhood of [Formula: see text]. The weight of a [Formula: see text]RDF [Formula: see text] of [Formula: see text] is the value [Formula: see text]. A k-rainbow dominating function [Formula: see text] in a graph with no isolated vertex is called a total k-rainbow dominating function if the subgraph of [Formula: see text] induced by the set [Formula: see text] has no isolated vertices. The total k-rainbow domination number of [Formula: see text], denoted by [Formula: see text], is the minimum weight of the total [Formula: see text]-rainbow dominating function on [Formula: see text]. The total k-rainbow reinforcement number of [Formula: see text], denoted by [Formula: see text], is the minimum number of edges that must be added to [Formula: see text] in order to decrease the total k-rainbow domination number. In this paper, we investigate the properties of total [Formula: see text]-rainbow reinforcement number in graphs. In particular, we present some sharp bounds for [Formula: see text] and we determine the total [Formula: see text]-rainbow reinforcement number of some classes of graphs including paths, cycles and complete bipartite graphs.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750009 ◽  
Author(s):  
Eunjeong Yi

Let [Formula: see text] be a graph with vertex set [Formula: see text] and edge set [Formula: see text]. If [Formula: see text] has no isolated vertex, then a disjunctive total dominating set (DTD-set) of [Formula: see text] is a vertex set [Formula: see text] such that every vertex in [Formula: see text] is adjacent to a vertex of [Formula: see text] or has at least two vertices in [Formula: see text] at distance two from it, and the disjunctive total domination number [Formula: see text] of [Formula: see text] is the minimum cardinality overall DTD-sets of [Formula: see text]. Let [Formula: see text] and [Formula: see text] be two disjoint copies of a graph [Formula: see text], and let [Formula: see text] be a bijection. Then, a permutation graph [Formula: see text] has the vertex set [Formula: see text] and the edge set [Formula: see text]. For any connected graph [Formula: see text] of order at least three, we prove the sharp bounds [Formula: see text]; we give an example showing that [Formula: see text] can be arbitrarily large. We characterize permutation graphs for which [Formula: see text] holds. Further, we show that [Formula: see text] when [Formula: see text] is a cycle, a path, and a complete [Formula: see text]-partite graph, respectively.


2018 ◽  
Vol 11 (03) ◽  
pp. 1850034 ◽  
Author(s):  
J. Amjadi ◽  
M. Soroudi

Let [Formula: see text] be a finite simple digraph with vertex set [Formula: see text] and arc set [Formula: see text]. A twin signed total Roman dominating function (TSTRDF) on the digraph [Formula: see text] is a function [Formula: see text] satisfying the conditions that (i) [Formula: see text] and [Formula: see text] for each [Formula: see text], where [Formula: see text] (respectively [Formula: see text]) consists of all in-neighbors (respectively out-neighbors) of [Formula: see text], and (ii) every vertex [Formula: see text] for which [Formula: see text] has an in-neighbor [Formula: see text] and an out-neighbor [Formula: see text] with [Formula: see text]. The weight of an TSTRDF [Formula: see text] is [Formula: see text]. The twin signed total Roman domination number [Formula: see text] of [Formula: see text] is the minimum weight of an TSTRDF on [Formula: see text]. In this paper, we initiate the study of twin signed total Roman domination in digraphs and we present some sharp bounds on [Formula: see text]. In addition, we determine the twin signed Roman domination number of some classes of digraphs.


Sign in / Sign up

Export Citation Format

Share Document