A new analytical solution of Klein–Gordon equation with local fractional derivative

Author(s):  
D. Ziane ◽  
M. Hamdi Cherif

The work presented in this paper is to combine the Sumudu transform method with a variational iteration method for solving linear and nonlinear partial differential equations with local fractional derivative. We apply the proposed method to obtain approximate analytical solutions of Klein–Gordon equations with local fractional derivative. The results obtained for the local fractional Klein–Gordon equation in the three cases presented, are in the form of non-differentiable functions. Through this work it can be said that this method is an alternative analytical method for linear and nonlinear local fractional partial differential equations.

We introduce a method for constructing solutions of homogeneous partial differential equations. This method can be used to construct the usual, well-known, separable solutions of the wave equation, but it also easily gives the non-separable localized wave solutions. These solutions exhibit a degree of focusing about the propagation axis that is dependent on a free parameter, and have many important potential applications. The method is based on constructing the space-time Fourier transform of a function so that it satisfies the transformed partial differential equation. We also apply the method to construct localized wave solutions of the wave equation in a lossy infinite medium, and of the Klein-Gordon equation. The localized wave solutions of these three equations differ somewhat, and we discuss these differences. A discussion of the properties of the localized waves, and of experiments to launch them, is included in the Appendix.


1998 ◽  
Vol 3 (1) ◽  
pp. 98-103
Author(s):  
V. V. Gudkov

A family of the functions, intended for a construction the exact travelling wave solutions of nonlinear partial differential equations, is given. Exact solutions of the Klein‐Gordon equation with a special potential are obtained. The behavior of complex and hypercomplex solutions of the second order is presented.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Raheel Kamal ◽  
Kamran ◽  
Gul Rahmat ◽  
Ali Ahmadian ◽  
Noreen Izza Arshad ◽  
...  

AbstractIn this article we propose a hybrid method based on a local meshless method and the Laplace transform for approximating the solution of linear one dimensional partial differential equations in the sense of the Caputo–Fabrizio fractional derivative. In our numerical scheme the Laplace transform is used to avoid the time stepping procedure, and the local meshless method is used to produce sparse differentiation matrices and avoid the ill conditioning issues resulting in global meshless methods. Our numerical method comprises three steps. In the first step we transform the given equation to an equivalent time independent equation. Secondly the reduced equation is solved via a local meshless method. Finally, the solution of the original equation is obtained via the inverse Laplace transform by representing it as a contour integral in the complex left half plane. The contour integral is then approximated using the trapezoidal rule. The stability and convergence of the method are discussed. The efficiency, efficacy, and accuracy of the proposed method are assessed using four different problems. Numerical approximations of these problems are obtained and validated against exact solutions. The obtained results show that the proposed method can solve such types of problems efficiently.


2021 ◽  
pp. 2150492
Author(s):  
Delmar Sherriffe ◽  
Diptiranjan Behera ◽  
P. Nagarani

The study of nonlinear physical and abstract systems is greatly important in order to determine the behavior of the solutions for Fractional Partial Differential Equations (FPDEs). In this paper, we study the analytical wave solutions of the time-fractional coupled Whitham–Broer–Kaup (WBK) equations under the meaning of conformal fractional derivative. These solutions are derived using the modified extended tanh-function method. Accordingly, different new forms of the solutions are obtained. In order to understand its behavior under varying parameters, we give the visual representations of all the solutions. Finally, the graphs are discussed and a conclusion is given.


Sign in / Sign up

Export Citation Format

Share Document