General reduced second Zagreb index of graph operations

Author(s):  
R. Khoeilar ◽  
A. Jahanbani

Let [Formula: see text] be a graph with vertex set [Formula: see text] and edge set [Formula: see text]. The general reduced second Zagreb index of [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is any real number and [Formula: see text] is the degree of the vertex [Formula: see text] of [Formula: see text]. In this paper, the general reduced second Zagreb index of the Cartesian product, corona product, join of graphs and two new operations of graphs are computed.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Durbar Maji ◽  
Ganesh Ghorai ◽  
Yaé Ulrich Gaba

Topological indices (TIs) are expressed by constant real numbers that reveal the structure of the graphs in QSAR/QSPR investigation. The reformulated second Zagreb index (RSZI) is such a novel TI having good correlations with various physical attributes, chemical reactivities, or biological activities/properties. The RSZI is defined as the sum of products of edge degrees of the adjacent edges, where the edge degree of an edge is taken to be the sum of vertex degrees of two end vertices of that edge with minus 2. In this study, the behaviour of RSZI under graph operations containing Cartesian product, join, composition, and corona product of two graphs has been established. We have also applied these results to compute RSZI for some important classes of molecular graphs and nanostructures.


Author(s):  
Dr. S. Nagarajan ◽  
◽  
G. Kayalvizhi ◽  
G. Priyadharsini ◽  
◽  
...  

In this paper we derive HF index of some graph operations containing join, Cartesian Product, Corona Product of graphs and compute the Y index of new operations of graphs related to the join of graphs.


Author(s):  
Bommanahal Basavanagoud ◽  
Shreekant Patil

The modified second multiplicative Zagreb index of a connected graph G, denoted by $\prod_{2}^{*}(G)$, is defined as $\prod_{2}^{*}(G)=\prod \limits_{uv\in E(G)}[d_{G}(u)+d_{G}(v)]^{[d_{G}(u)+d_{G}(v)]}$ where $d_{G}(z)$ is the degree of a vertex z in G. In this paper, we present some upper bounds for the modified second multiplicative Zagreb index of graph operations such as union, join, Cartesian product, composition and corona product of graphs are derived.The modified second multiplicative Zagreb index of aconnected graph , denoted by , is defined as where is the degree of avertex in . In this paper, we present some upper bounds for themodified second multiplicative Zagreb index of graph operations such as union,join, Cartesian product, composition and corona product of graphs are derived.


2019 ◽  
Vol 11 (05) ◽  
pp. 1950054 ◽  
Author(s):  
Durbar Maji ◽  
Ganesh Ghorai

The third leap Zagreb index of a graph [Formula: see text] is denoted as [Formula: see text] and is defined as [Formula: see text], where [Formula: see text] and [Formula: see text] are the 2-distance degree and the degree of the vertex [Formula: see text] in [Formula: see text], respectively. The first, second and third leap Zagreb indices were introduced by Naji et al. [A. M. Naji, N. D. Soner and I. Gutman, On leap Zagreb indices of graphs, Commun. Combin. Optim. 2(2) (2017) 99–117] in 2017. In this paper, the behavior of the third leap Zagreb index under several graph operations like the Cartesian product, Corona product, neighborhood Corona product, lexicographic product, strong product, tensor product, symmetric difference and disjunction of two graphs is studied.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050084
Author(s):  
John Joy Mulloor ◽  
V. Sangeetha

Let [Formula: see text] be a graph with edge set [Formula: see text] and vertex set [Formula: see text]. For a connected graph [Formula: see text], a vertex set [Formula: see text] of [Formula: see text] is said to be a geodetic set if every vertex in [Formula: see text] lies in a shortest path between any pair of vertices in [Formula: see text]. If the geodetic set [Formula: see text] is dominating, then [Formula: see text] is geodetic dominating set. A vertex set [Formula: see text] of [Formula: see text] is said to be a restrained geodetic dominating set if [Formula: see text] is geodetic, dominating and the subgraph induced by [Formula: see text] has no isolated vertex. The minimum cardinality of such set is called restrained geodetic domination (rgd) number. In this paper, rgd number of certain classes of graphs and 2-self-centered graphs was discussed. The restrained geodetic domination is discussed in graph operations such as Cartesian product and join of graphs. Restrained geodetic domination in corona product between a general connected graph and some classes of graphs is also discussed in this paper.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Sourav Mondal ◽  
Nilanjan De ◽  
Anita Pal

Topological indices are numeric quantities that transform chemical structure to real number. Topological indices are used in QSAR/QSPR studies to correlate the bioactivity and physiochemical properties of molecule. In this paper, some newly designed neighborhood degree-based topological indices named as neighborhood Zagreb index ([Formula: see text]), neighborhood version of Forgotten topological index ([Formula: see text]), modified neighborhood version of Forgotten topological index ([Formula: see text]), neighborhood version of second Zagreb index ([Formula: see text]) and neighborhood version of hyper Zagreb index ([Formula: see text]) are obtained for Graphene and line graph of Graphene using subdivision idea. In addition, these indices are compared graphically with respect to their response for Graphene and line graph of subdivision of Graphene.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
H. M. Awais ◽  
Muhammad Javaid ◽  
Akbar Ali

The first general Zagreb (FGZ) index (also known as the general zeroth-order Randić index) of a graph G can be defined as M γ G = ∑ u v ∈ E G d G γ − 1 u + d G γ − 1 v , where γ is a real number. As M γ G is equal to the order and size of G when γ = 0 and γ = 1 , respectively, γ is usually assumed to be different from 0 to 1. In this paper, for every integer γ ≥ 2 , the FGZ index M γ is computed for the generalized F-sums graphs which are obtained by applying the different operations of subdivision and Cartesian product. The obtained results can be considered as the generalizations of the results appeared in (IEEE Access; 7 (2019) 47494–47502) and (IEEE Access 7 (2019) 105479–105488).


2018 ◽  
Vol 14 ◽  
pp. 473-476 ◽  
Author(s):  
Nur Idayu Alimon ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

Assume  is a non-abelian group  A dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. The non-commuting graph of  denoted by  is the graph of vertex set  whose vertices are non-central elements, in which  is the center of  and two distinct vertices  and  are joined by an edge if and only if  In this paper, some topological indices of the non-commuting graph,  of the dihedral groups,  are presented. In order to determine the Edge-Wiener index, First Zagreb index and Second Zagreb index of the non-commuting graph,  of the dihedral groups,  previous results of some of the topological indices of non-commuting graph of finite group are used. Then, the non-commuting graphs of dihedral groups of different orders are found. Finally, the generalisation of Edge-Wiener index, First Zagreb index and Second Zagreb index of the non-commuting graphs of dihedral groups are determined.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yasar Nacaroglu

The sigma coindex is defined as the sum of the squares of the differences between the degrees of all nonadjacent vertex pairs. In this paper, we propose some mathematical properties of the sigma coindex. Later, we present precise results for the sigma coindices of various graph operations such as tensor product, Cartesian product, lexicographic product, disjunction, strong product, union, join, and corona product.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Anam Rani ◽  
Muhammad Imran ◽  
Usman Ali

Vukičević and Gasperov introduced the concept of 148 discrete Adriatic indices in 2010. These indices showed good predictive properties against the testing sets of the International Academy of Mathematical Chemistry. Among these indices, twenty indices were taken as beneficial predictors of physicochemical properties. The inverse sum indeg index denoted by ISI G k of G k is a notable predictor of total surface area for octane isomers and is presented as ISI G k = ∑ g k g k ′ ∈ E G k d G k g k d G k g k ′ / d G k g k + d G k g k ′ , where d G k g k represents the degree of g k ∈ V G k . In this paper, we determine sharp bounds for ISI index of graph operations, including the Cartesian product, tensor product, strong product, composition, disjunction, symmetric difference, corona product, Indu–Bala product, union of graphs, double graph, and strong double graph.


Sign in / Sign up

Export Citation Format

Share Document