On the normalized Laplacian spectrum of the comaximal graphs
Let [Formula: see text] be a commutative ring with nonzero identity. The comaximal graph of [Formula: see text], denoted by [Formula: see text], is a simple graph with vertex set [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. Let [Formula: see text] be an induced subgraph of [Formula: see text] with nonunit elements of [Formula: see text] as vertices. In this paper, we describe the normalized Laplacian spectrum of [Formula: see text], and we determine it for some values of [Formula: see text], where [Formula: see text] is the ring of integers modulo [Formula: see text]. Moreover, we investigate the normalized Laplacian energy and general Randic index of [Formula: see text].