scholarly journals On Laplacian Eigenvalues of the Zero-Divisor Graph Associated to the Ring of Integers Modulo n

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 482
Author(s):  
Bilal A. Rather ◽  
Shariefuddin Pirzada ◽  
Tariq A. Naikoo ◽  
Yilun Shang

Given a commutative ring R with identity 1≠0, let the set Z(R) denote the set of zero-divisors and let Z*(R)=Z(R)∖{0} be the set of non-zero zero-divisors of R. The zero-divisor graph of R, denoted by Γ(R), is a simple graph whose vertex set is Z*(R) and each pair of vertices in Z*(R) are adjacent when their product is 0. In this article, we find the structure and Laplacian spectrum of the zero-divisor graphs Γ(Zn) for n=pN1qN2, where p<q are primes and N1,N2 are positive integers.

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Huadong Su ◽  
Pailing Li

Let R be a commutative ring with identity. The zero-divisor graph of R, denoted Γ(R), is the simple graph whose vertices are the nonzero zero-divisors of R, and two distinct vertices x and y are linked by an edge if and only if xy=0. The genus of a simple graph G is the smallest integer g such that G can be embedded into an orientable surface Sg. In this paper, we determine that the genus of the zero-divisor graph of Zn, the ring of integers modulo n, is two or three.


2021 ◽  
Vol 13 (1) ◽  
pp. 48-57 ◽  
Author(s):  
S. Pirzada ◽  
B.A. Rather ◽  
T.A. Chishti

For a finite commutative ring $\mathbb{Z}_{n}$ with identity $1\neq 0$, the zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices $x$ and $y$ are adjacent if and only if $xy=0$. We find the distance Laplacian spectrum of the zero divisor graphs $\Gamma(\mathbb{Z}_{n})$ for different values of $n$. Also, we obtain the distance Laplacian spectrum of $\Gamma(\mathbb{Z}_{n})$ for $n=p^z$, $z\geq 2$, in terms of the Laplacian spectrum. As a consequence, we determine those $n$ for which zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is distance Laplacian integral.


2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Ch. Eslahchi ◽  
A. M. Rahimi

The concept of the zero-divisor graph of a commutative ring has been studied by many authors, and thek-zero-divisor hypergraph of a commutative ring is a nice abstraction of this concept. Though some of the proofs in this paper are long and detailed, any reader familiar with zero-divisors will be able to read through the exposition and find many of the results quite interesting. LetRbe a commutative ring andkan integer strictly larger than2. Ak-uniform hypergraphHk(R)with the vertex setZ(R,k), the set of allk-zero-divisors inR, is associated toR, where eachk-subset ofZ(R,k)that satisfies thek-zero-divisor condition is an edge inHk(R). It is shown that ifRhas two prime idealsP1andP2with zero their only common point, thenHk(R)is a bipartite (2-colorable) hypergraph with partition setsP1−Z′andP2−Z′, whereZ′is the set of all zero divisors ofRwhich are notk-zero-divisors inR. IfRhas a nonzero nilpotent element, then a lower bound for the clique number ofH3(R)is found. Also, we have shown thatH3(R)is connected with diameter at most 4 wheneverx2≠0for all3-zero-divisorsxofR. Finally, it is shown that for any finite nonlocal ringR, the hypergraphH3(R)is complete if and only ifRis isomorphic toZ2×Z2×Z2.


2020 ◽  
Vol 12 (1) ◽  
pp. 84-101 ◽  
Author(s):  
S. Pirzada ◽  
M. Aijaz

AbstractLet R be a commutative ring with Z*(R) as the set of non-zero zero divisors. The zero divisor graph of R, denoted by Γ(R), is the graph whose vertex set is Z*(R), where two distinct vertices x and y are adjacent if and only if xy = 0. In this paper, we investigate the metric dimension dim(Γ(R)) and upper dimension dim+(Γ(R)) of zero divisor graphs of commutative rings. For zero divisor graphs Γ(R) associated to finite commutative rings R with unity 1 ≠ 0, we conjecture that dim+(Γ(R)) = dim(Γ(R)), with one exception that {\rm{R}} \cong \Pi {\rm\mathbb{Z}}_2^{\rm{n}}, n ≥ 4. We prove that this conjecture is true for several classes of rings. We also provide combinatorial formulae for computing the metric and upper dimension of zero divisor graphs of certain classes of commutative rings besides giving bounds for the upper dimension of zero divisor graphs of rings.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ali Ahmad ◽  
S. C. López

Let R be a commutative ring with nonzero identity and let Z R be its set of zero divisors. The zero-divisor graph of R is the graph Γ R with vertex set V Γ R = Z R ∗ , where Z R ∗ = Z R \ 0 , and edge set E Γ R = x , y :   x ⋅ y = 0 . One of the basic results for these graphs is that Γ R is connected with diameter less than or equal to 3. In this paper, we obtain a few distance-based topological polynomials and indices of zero-divisor graph when the commutative ring is ℤ p 2 q 2 , namely, the Wiener index, the Hosoya polynomial, and the Shultz and the modified Shultz indices and polynomials.


2016 ◽  
Vol 16 (07) ◽  
pp. 1750132 ◽  
Author(s):  
M. J. Nikmehr ◽  
R. Nikandish ◽  
M. Bakhtyiari

Let [Formula: see text] be a commutative ring with identity, and let [Formula: see text] be the set of zero-divisors of [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if ann[Formula: see text] is an essential ideal. It is proved that [Formula: see text] is connected with diameter at most three and with girth at most four, if [Formula: see text] contains a cycle. Furthermore, rings with complete or star essential graphs are characterized. Also, we study the affinity between essential graph and zero-divisor graph that is associated with a ring. Finally, we show that the essential graph associated with an Artinian ring is weakly perfect, i.e. its vertex chromatic number equals its clique number.


Author(s):  
Mojgan Afkhami

Let [Formula: see text] be a commutative ring with nonzero identity. The comaximal graph of [Formula: see text], denoted by [Formula: see text], is a simple graph with vertex set [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. Let [Formula: see text] be an induced subgraph of [Formula: see text] with nonunit elements of [Formula: see text] as vertices. In this paper, we describe the normalized Laplacian spectrum of [Formula: see text], and we determine it for some values of [Formula: see text], where [Formula: see text] is the ring of integers modulo [Formula: see text]. Moreover, we investigate the normalized Laplacian energy and general Randic index of [Formula: see text].


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


2019 ◽  
Vol 19 (08) ◽  
pp. 2050155
Author(s):  
Gaohua Tang ◽  
Guangke Lin ◽  
Yansheng Wu

In this paper, we introduce the concept of the associate class graph of zero-divisors of a commutative ring [Formula: see text], denoted by [Formula: see text]. Some properties of [Formula: see text], including the diameter, the connectivity and the girth are investigated. Utilizing this graph, we present a new class of counterexamples of Beck’s conjecture on the chromatic number of the zero-divisor graph of a commutative ring.


Sign in / Sign up

Export Citation Format

Share Document