Some refined Young type inequalities using different weights

Author(s):  
Leila Nasiri ◽  
Bahman Askari

The Young type inequality asserts that if [Formula: see text] are two positive real numbers, then for each [Formula: see text], we have [Formula: see text] In this paper, we obtain some new inequalities using two different weights. For example, if [Formula: see text], then [Formula: see text] [Formula: see text] where [Formula: see text] In addition, we refine some matrix inequalities for Unitarily invariant norms by applying the deduced numerical inequalities.

2020 ◽  
Vol 70 (2) ◽  
pp. 453-466
Author(s):  
A. Beiranvand ◽  
Amir Ghasem Ghazanfari

Abstract In this paper, we present numerous refinements of the Young inequality by the Kantorovich constant. We use these improved inequalities to establish corresponding operator inequalities on a Hilbert space and some new inequalities involving the Hilbert-Schmidt norm of matrices. We also give some refinements of the following Heron type inequality for unitarily invariant norm |||⋅||| and A, B, X ∈ Mn(ℂ): $$\begin{array}{} \begin{split} \displaystyle \Big|\Big|\Big|\frac{A^\nu XB^{1-\nu}+A^{1-\nu}XB^\nu}{2}\Big|\Big|\Big| \leq &(4r_0-1)|||A^{\frac{1}{2}}XB^{\frac{1}{2}}||| \\ &+2(1-2r_0)\Big|\Big|\Big|(1-\alpha)A^{\frac{1}{2}}XB^{\frac{1}{2}} +\alpha\Big(\frac{AX+XB}{2}\Big)\Big|\Big|\Big|, \end{split} \end{array}$$ where $\begin{array}{} \displaystyle \frac{1}{4}\leq \nu \leq \frac{3}{4}, \alpha \in [\frac{1}{2},\infty ) \end{array}$ and r0 = min{ν, 1 – ν}.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6473-6481 ◽  
Author(s):  
Mohsen Kian ◽  
Mahdi Dehghani

It is known that the power function f (t) = t2 is not matrix monotone. Recently, it has been shown that t2 preserves the order in some matrix inequalities. We prove that if A = (A1,...,Ak) and B = (B1,...,Bk) are k-tuples of positive matrices with 0 < m ? Ai; Bi ? M (i = 1,...,k) for some positive real numbers m < M, then ?2 (A-11,...,A-1k) ? (1+vk)2/4vk)2 ?-2(A1,...,Ak) and ?2 (A1+B1/2,..., Ak+Bk/2)? (1+vk)2/4vk)2 ?2 (A1#B1,...Ak#Bk), where ? is a unital positive multilinear mapping and v = M/m is the condition number of each Ai.


Author(s):  
Tatjana Z. Mirkovic

In this paper, we obtain some inequalities of Wirtinger type by using some classical inequalities and means for convex functions and establish some applications to special means for positive real numbers.


Author(s):  
Muhammad Amer Latif ◽  
Sever Silvestru Dragomir ◽  
Sofian Obeidat

This research contains new integral inequalities of Fejer and ´ Hermite-Hadamard type involving convex and quasi-convex functions. Applications of the newly established results for special means of positive real numbers are given.


Filomat ◽  
2019 ◽  
Vol 33 (12) ◽  
pp. 3751-3758
Author(s):  
Jianguo Zhao

In this note, some operator inequalities for operator means and positive linear maps are investigated. The conclusion based on operator means is presented as follows: Let ? : B(H) ? B(K) be a strictly positive unital linear map and h-1 IH ? A ? h1IH and h-12 IH ? B ? h2IH for positive real numbers h1, h2 ? 1. Then for p > 0 and an arbitrary operator mean ?, (?(A)??(B))p ? ?p?p(A?*B), where ?p = max {?2(h1,h2)/4)p, 1/16?2p(h1,h2)}, ?(h1h2) = (h1 + h-1 1)?(h2 + h-12). Likewise, a p-th (p ? 2) power of the Diaz-Metcalf type inequality is also established.


2018 ◽  
Vol 7 (1) ◽  
pp. 77-83
Author(s):  
Rajendra Prasad Regmi

There are various methods of finding the square roots of positive real number. This paper deals with finding the principle square root of positive real numbers by using Lagrange’s and Newton’s interpolation method. The interpolation method is the process of finding the values of unknown quantity (y) between two known quantities.


1985 ◽  
Vol 50 (1) ◽  
pp. 110-122
Author(s):  
Howard Becker

For any A ⊂ R, the Banach game B(A) is the following infinite game on reals: Players I and II alternately play positive real numbers a1; a2, a3, a4,… such that for n > 1, an < an−1. Player I wins iff ai exists and is in A.This type of game was introduced by Banach in 1935 in the Scottish Book [15], Problem 43. The (rather vague) problem which Banach posed was to characterize those sets A for which I (II) has a winning strategy in B(A). (There are three parts to Problem 43. In the first, Mazur defined a game G**(A) for every set A ⊂ R and conjectured that II has a winning strategy in G**(A) iff A is meager and I has a winning strategy in G**(A) iff A is comeager in some neighborhood; this conjecture was proved by Banach. Presumably Banach had this result in mind when he asked the question about B(A), and hoped for a similar type of characterization.) Incidentally, Problem 43 of the Scottish Book appears to be the first time infinite games of any sort were studied by mathematicians.This paper will not provide the reader with any answer to Banach's question. I know of no nontrivial way to characterize when player I (or II) wins, and I suspect there is none. This paper is concerned with a different (also rather vague) question: For which sets A is the Banach game B(A) determined? To say that B(A) is determined means, of course, that one of the players has a winning strategy for B(A).


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Dağistan Simsek ◽  
Bilal Demir ◽  
Cengiz Cinar

We study the behavior of the solutions of the following system of difference equationsxn+1=max⁡{A/xn,yn/xn},yn+1=max⁡{A/yn,xn/yn}where the constantAand the initial conditions are positive real numbers.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Emin Bešo ◽  
Senada Kalabušić ◽  
Naida Mujić ◽  
Esmir Pilav

AbstractWe consider the second-order rational difference equation $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$xn+1=γ+δxnxn−12, where γ, δ are positive real numbers and the initial conditions $x_{-1}$x−1 and $x_{0}$x0 are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.


2014 ◽  
Vol 33 (2) ◽  
pp. 59-67
Author(s):  
Pankaj Kumar ◽  
S. S. Bhatia ◽  
Vijay Kumar

In this paper, we aim to generalize the notion of statistical convergence for double sequences on probabilistic normed spaces with the help of two nondecreasing sequences of positive real numbers $\lambda=(\lambda_{n})$ and $\mu = (\mu_{n})$  such that each tending to zero, also $\lambda_{n+1}\leq \lambda_{n}+1, \lambda_{1}=1,$ and $\mu_{n+1}\leq \mu_{n}+1, \mu_{1}=1.$ We also define generalized statistically Cauchy double sequences on PN space and establish the Cauchy convergence criteria in these spaces.


Sign in / Sign up

Export Citation Format

Share Document