Graphene modified Li-rich cathode material Li[Li0.26Ni0.07Co0.07Mn0.56]O2 for lithium ion battery

2014 ◽  
Vol 07 (06) ◽  
pp. 1440013 ◽  
Author(s):  
Xiangjun Li ◽  
Hongxing Xin ◽  
Xiaoying Qin ◽  
Xueqin Yuan ◽  
Di Li ◽  
...  

Lithium and Mn rich solid solution materials Li [ Li 0.26 Ni 0.07 Co 0.07 Mn 0.56] O 2 were synthesized by a carbonate co-precipitation method and modified with a layer of graphene. The graphene-modified cathodes exhibit improved rate capability and cycling performance as compared to the bare cathodes. Electrochemical impedance spectroscopy (EIS) analyses reveal that the improved electrochemical performances are due to acceleration kinetics of lithium-ion diffusion and the charge transfer reaction of the graphene-modified cathodes.

2014 ◽  
Vol 07 (05) ◽  
pp. 1450061 ◽  
Author(s):  
Jianqiu Deng ◽  
Hao Liu ◽  
Jin Pan ◽  
C. Y. Chung ◽  
Qingrong Yao ◽  
...  

Pure Li 1.1 Ni 0.35 Co 0.35 Mn 0.30 O 2 nanosized powders have been successfully synthesized by improved hydroxide co-precipitation method, and characterized with X-ray powder diffraction and scanning electron microscopy (SEM). The electrochemical properties of cathodes and Li 1.1 Ni 0.35 Co 0.35 Mn 0.30 O 2/ Li 4 Ti 5 O 12 full cells have been studied by charge–discharge tests and cyclic voltammetry. The Li 1.1 Ni 0.35 Co 0.35 Mn 0.30 O 2 powders have a typical layered hexagonal crystal structure with an average particle size of about 780 nm. The cathodes exhibit high capacities and good cycling performance. The initial discharge capacity of the cathodes is 154.8 mAhg-1 at 0.5 C between 2.5 V and 4.3 V, and the capacity retention keeps 80.6% after 50 charge–discharge cycles. The Li 1.1 Ni 0.35 Co 0.35 Mn 0.30 O 2/ Li 4 Ti 5 O 12 cells also deliver high specific capacities, good cycling stability and rate capability. This work demonstrates that Li 1.1 Ni 0.35 Co 0.35 Mn 0.30 O 2 is a promising cathode material for lithium-ion batteries.


2011 ◽  
Vol 295-297 ◽  
pp. 700-703
Author(s):  
Sheng Kui Zhong ◽  
Yue Bin Xu ◽  
Yan Wei Li ◽  
Chang Jiu Liu ◽  
Yan Hong Li

LiNi0.4Co0.2Mn0.4O2 sampleswas synthesized via urea co-precipitation method. The XRD, SEM and electrochemical measurements were used to examine the structure,morphology and electrochemical characteristics, respectively. LiNi0.4Co0.2Mn0.4O2 powders show excellent electrochemical performances. The optimum sintering temperature and sintering time are 800°C and 20 h, respectively. The LiNi0.4Co0.2Mn0.4O2 powders shows the discharge capacity of 145.1 mAh·g-1in the range of 3.0-4.5 V at the first cycle, and the discharge capacity remains 132.3 mAh·g-1after 30 cycles. The urea co-precipitation method is suitable for the preparation of LiNi0.4Co0.2Mn0.4O2 cathode materials with good electrochemical performances for lithium ion batteries.


2014 ◽  
Vol 07 (02) ◽  
pp. 1450010 ◽  
Author(s):  
Linsen Zhang ◽  
Qingling Bai ◽  
Linzhen Wang ◽  
Aiqin Zhang ◽  
Yong Zhang ◽  
...  

SrWO 4/graphene composite was synthesized via a sol–gel method. The morphology and structure of the products were analyzed by SEM, TEM and XRD. The electrochemical performances of SrWO 4/graphene composite were investigated by galvanostatic charge/discharge method, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that the first cycle of the reversible specific capacity of SrWO 4/graphene composite can reach to 575.9 mAh g-1 at 50 mA g-1. The charge/discharge cycling study indicates that the SrWO 4/graphene composite was provided with excellent cycle performance and outstanding rate capability.


2017 ◽  
Vol 41 (3) ◽  
pp. 975-981 ◽  
Author(s):  
Hua Li ◽  
Zhoufu Li ◽  
Yanhui Cui ◽  
Chenxiang Ma ◽  
Zhiyuan Tang

Li2ZnTi3O8 and Li2ZnTi3O8/TiO2 anode materials were synthesized via a co-precipitation method and displayed excellent electrochemical performances.


2015 ◽  
Vol 814 ◽  
pp. 358-364
Author(s):  
Peng Xiao Huang ◽  
Shui Hua Tang ◽  
Hui Peng ◽  
Xing Li

Graphitized-Carbon coated Li4Ti5O12/C (Li4Ti5O12/GC) composites were prepared from Li2CO3, TiO2 and aromatic resorcinol via a facile rheological phase method. The microstructure and morphology of the samples were determined by XRD and SEM. The electrochemical performances of the samples were characterized by galvanostatic charge-discharge test and electrochemical impedance spectroscopy (EIS). The results reveal that the coating of graphitized carbon could effectively enhance the charge/transfer kinetics of the Li4Ti5O12 electrode. The Li4Ti5O12/GC could deliver a discharge specific capacity of 166 mAh/g at 0.2 C, 148 mAh/g at 1.0 C, 142 mAh/g at 3.0 C, 138 mAh/g at 5.0 C and 127 mAh/g at 10.0 C, respectively, and it still could remain at 132 mAh/g after cycled at 5.0 C for 100 cycles. The excellent rate capability of the Li4Ti5O12/C makes it a promising anode material for high rate lithium ion batteries.


2015 ◽  
Vol 15 (10) ◽  
pp. 8042-8047 ◽  
Author(s):  
Minchan Jeong ◽  
Hyun-Soo Kim ◽  
Dong-Sik Bae ◽  
Chang-Woo Lee ◽  
Bong-Soo Jin

In this study, the Li3V2–X YX(PO4)3 compounds have been synthesized by a simple solid state method. In addition, a polyurethane was added to apply carbon coating on the surface of the Li3V2–X YX(PO4)3 particles for enhancement of the electrical conductivity. The crystal structure and morphology of the synthesized Li3V2–XYX(PO4)3/C (LVYP/C) was investigated using an X-ray diffraction (XRD) and a scanning electron microscopy (SEM) systematically. The electrochemical performance of synthesized material, such as the initial capacity, rate capability, cycling performance and EIS was evaluated. The sizes of synthesized particle ranged from 1 to 5 μm. The Li3V2–XYX(PO4)3/C (X = 0.02) delivered the initial discharge capacity of 171.5 mAh · g–1 at 0.1C rate. It showed a capacity retention ratio of 73.0% at 1.0C after 100th cycle. The electrochemical impedance spectroscopies (EIS) results revealed that the charge transfer resistance of the material decreases by Y doping.


Sign in / Sign up

Export Citation Format

Share Document