Novel perylene diimide acceptor for nonfullerene organic solar cells

2019 ◽  
Vol 12 (03) ◽  
pp. 1950022 ◽  
Author(s):  
Yuming Liang ◽  
Ping Deng ◽  
Zhongtao Wang ◽  
Zhiyong Guo ◽  
Yanlian Lei

Nonfullerene electron acceptor materials have gained enormous attention due to their potential as replacements of fullerene electron acceptors in bulk heterojunction organic solar cells. A novel thiophene bridged selenophene-containing perylene diimide acceptor PDISe-T has been synthesized and applied as an acceptor in nonfullerene organic photovoltaic cells. The inverted organic photovoltaic (OPV) solar cells based on PDISe-T:PBT7-Th (acceptor:donor) blends give a power conversion efficiency (PCE) value of 2.53% with an open-circuit voltage ([Formula: see text] of 0.92[Formula: see text]V, a [Formula: see text] of 6.55[Formula: see text]mA[Formula: see text]cm[Formula: see text], and a fill factor (FF) of 0.42.

2017 ◽  
Vol 5 (44) ◽  
pp. 23067-23077 ◽  
Author(s):  
Keisuke Ogumi ◽  
Takafumi Nakagawa ◽  
Hiroshi Okada ◽  
Ryohei Sakai ◽  
Huan Wang ◽  
...  

Acceptor–donor–acceptor conjugated magnesium porphyrins showed a power conversion efficiency of 5.73%, high open-circuit voltage of 0.79 V, or an extended incident photon-to-current conversion efficiency spectrum to 1100 nm, depending on the substituents.


2015 ◽  
Vol 17 (40) ◽  
pp. 26580-26588 ◽  
Author(s):  
Thaksen Jadhav ◽  
Rajneesh Misra ◽  
S. Biswas ◽  
Ganesh D. Sharma

The power conversion efficiency of an optimized3a:PC71BM active layer based device is 5.05%.


Author(s):  
Nur Shakina Mohd Shariff ◽  
Puteri Sarah Mohamad Saad ◽  
Mohamad Rusop Mahmood

There has been an increasing interest towards organic solar cells after the discovery of conjugated polymer and bulk-heterojunction concept. Eventhough organic solar cells are less expensive than inorganic solar cells but the power conversion energy is still considered low. The main objective of this research is to investigate the effect of the P3HT’s thickness and concentration towards the efficiency of the P3HT:Graphene solar cells. A simulation software that is specialize for photovoltaic called SCAPS is used in this research to simulate the effect on the solar cells. The solar cell’s structure will be drawn inside the simulation and the parameters for each layers is inserted. The result such as the open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), efficiency (η), capacitance-voltage (C-V) and capacitance-frequency (C-f) characteristic will be calculated by the software and all the results will be put into one graph.


2018 ◽  
Vol 54 (76) ◽  
pp. 10770-10773 ◽  
Author(s):  
Jianfeng Li ◽  
Jing Yang ◽  
Junyi Hu ◽  
You Chen ◽  
Bo Xiao ◽  
...  

The first thieno[3,4-b]pyrazine (TP) based non-fullerene acceptor was designed and synthesized, which could realize a moderate power conversion efficiency (PCE) of 5.81% with a high open-circuit voltage (Voc) of 1.05 V by using J61 as a donor polymer.


2019 ◽  
Vol 43 (26) ◽  
pp. 10442-10448 ◽  
Author(s):  
Sergey V. Dayneko ◽  
Arthur D. Hendsbee ◽  
Jonathan R. Cann ◽  
Clément Cabanetos ◽  
Gregory C. Welch

The addition of donor or acceptor type molecular semiconductors to PBDB-T:PC60BM based organic photovoltaics leads to increases in open circuit-voltages and overall power conversion efficiencies.


2006 ◽  
Vol 88 (7) ◽  
pp. 073514 ◽  
Author(s):  
Kenji Kawano ◽  
Norihiro Ito ◽  
Taisuke Nishimori ◽  
Jun Sakai

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Marcel M. Said ◽  
Yadong Zhang ◽  
Raghunath R. Dasari ◽  
Dalaver H. Anjum ◽  
Rahim Munir ◽  
...  

AbstractPoly(3-hexylthiophene) (P3HT) films and P3HT / fullerene photovoltaic cells have been p-doped with very low levels (< 1 wt. %) of molybdenum tris[1-(trifluoromethylcarbonyl)- 2-(trifluoromethyl)-ethane-1,2-dithiolene]. The dopants are inhomogenously distributed within doped P3HT films, both laterally and as a function of depth, and appear to aggregate in some instances. Doping also results in subtle changes in the local and long range order of the P3HT film. These effects likely contribute to the complexity of the observed evolutions in conductivity, mobility and work function with doping levels. They also negatively affect the open-circuit voltage and fill factor of solar cells in unexpected ways, indicating that dopant aggregation and non-uniform distribution can harm device performance.


Sign in / Sign up

Export Citation Format

Share Document