Characterization of some classes of graphs with equal domination number and isolate domination number

2020 ◽  
Vol 12 (05) ◽  
pp. 2050065
Author(s):  
Davood Bakhshesh

Let [Formula: see text] be a simple and undirected graph with vertex set [Formula: see text]. A set [Formula: see text] is called a dominating set of [Formula: see text], if every vertex in [Formula: see text] is adjacent to at least one vertex in [Formula: see text]. The minimum cardinality of a dominating set of [Formula: see text] is called the domination number of [Formula: see text], denoted by [Formula: see text]. A dominating set [Formula: see text] of [Formula: see text] is called isolate dominating, if the induced subgraph [Formula: see text] of [Formula: see text] contains at least one isolated vertex. The minimum cardinality of an isolate dominating set of [Formula: see text] is called the isolate domination number of [Formula: see text], denoted by [Formula: see text]. In this paper, we show that for every proper interval graph [Formula: see text], [Formula: see text]. Moreover, we provide a constructive characterization for trees with equal domination number and isolate domination number. These solve part of an open problem posed by Hamid and Balamurugan [Isolate domination in graphs, Arab J. Math. Sci. 22(2) (2016) 232–241].

Author(s):  
P. Nataraj ◽  
R. Sundareswaran ◽  
V. Swaminathan

In a simple, finite and undirected graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], a subset [Formula: see text] of [Formula: see text] is said to be a degree equitable dominating set if for every [Formula: see text] there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] denotes the degree of [Formula: see text] in [Formula: see text]. The minimum cardinality of such a dominating set is denoted by [Formula: see text] and is called the equitable domination number of [Formula: see text]. In this paper, we introduce Complementary Equitably Totally Disconnected Equitable domination in graphs and obtain some interesting results. Also, we discuss some bounds of this new domination parameter.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050072
Author(s):  
A. Mahmoodi ◽  
L. Asgharsharghi

Let [Formula: see text] be a simple graph with vertex set [Formula: see text] and edge set [Formula: see text]. An outer-paired dominating set [Formula: see text] of a graph [Formula: see text] is a dominating set such that the subgraph induced by [Formula: see text] has a perfect matching. The outer-paired domination number of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of an outer-paired dominating set of [Formula: see text]. In this paper, we study the outer-paired domination number of graphs and present some sharp bounds concerning the invariant. Also, we characterize all the trees with [Formula: see text].


2017 ◽  
Vol 09 (01) ◽  
pp. 1750009 ◽  
Author(s):  
Eunjeong Yi

Let [Formula: see text] be a graph with vertex set [Formula: see text] and edge set [Formula: see text]. If [Formula: see text] has no isolated vertex, then a disjunctive total dominating set (DTD-set) of [Formula: see text] is a vertex set [Formula: see text] such that every vertex in [Formula: see text] is adjacent to a vertex of [Formula: see text] or has at least two vertices in [Formula: see text] at distance two from it, and the disjunctive total domination number [Formula: see text] of [Formula: see text] is the minimum cardinality overall DTD-sets of [Formula: see text]. Let [Formula: see text] and [Formula: see text] be two disjoint copies of a graph [Formula: see text], and let [Formula: see text] be a bijection. Then, a permutation graph [Formula: see text] has the vertex set [Formula: see text] and the edge set [Formula: see text]. For any connected graph [Formula: see text] of order at least three, we prove the sharp bounds [Formula: see text]; we give an example showing that [Formula: see text] can be arbitrarily large. We characterize permutation graphs for which [Formula: see text] holds. Further, we show that [Formula: see text] when [Formula: see text] is a cycle, a path, and a complete [Formula: see text]-partite graph, respectively.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
T. Asir

A subset D of the vertex set of a graph G, is a dominating set if every vertex in V−D is adjacent to at least one vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A subset of V−D, which is also a dominating set of G is called an inverse dominating set of G with respect to D. The inverse domination number γ′(G) is the minimum cardinality of the inverse dominating sets. Domke et al. (2004) characterized connected graphs G with γ(G)+γ′(G)=n, where n is the number of vertices in G. It is the purpose of this paper to give a complete characterization of graphs G with minimum degree at least two and γ(G)+γ′(G)=n−1.


Throughout this paper, consider G = (V,E) as a connected graph. A subset D of V(G) is a set dominating set of G if for every M  V / D there exists a non-empty set N of D such that the induced sub graph <MUN> is connected. A subset D of the vertex set of a graph G is called a co-secure dominating set of a graph if D is a dominating set, and for each u' D there exists a vertex v'V / D such that u'v' is an edge and D \u'v' is a dominating set. A co-secure dominating set D is a co-secure set dominating set of G if D is also a set dominating set of G. The co-secure set domination number G s cs γ is the minimum cardinality of a co-secure set dominating set. In this paper we initiate the study of this new parameter & also determine the co-secure set domination number of some standard graphs and obtain its bounds.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
K. Suriya Prabha ◽  
S. Amutha ◽  
N. Anbazhagan ◽  
Ismail Naci Cangul

A set S ⊆ V of a graph G = V , E is called a co-independent liar’s dominating set of G if (i) for all v ∈ V , N G v ∩ S ≥ 2 , (ii) for every pair u , v ∈ V of distinct vertices, N G u ∪ N G v ∩ S ≥ 3 , and (iii) the induced subgraph of G on V − S has no edge. The minimum cardinality of vertices in such a set is called the co-independent liar’s domination number of G , and it is denoted by γ coi L R G . In this paper, we introduce the concept of co-independent liar’s domination number of the middle graph of some standard graphs such as path and cycle graphs, and we propose some bounds on this new parameter.


2011 ◽  
Vol 3 (3) ◽  
pp. 547-555 ◽  
Author(s):  
B. Basavanagoud ◽  
S. M. Hosamani

Let  be a graph. A set  of a graph  is called a total dominating set if the induced subgraph  has no isolated vertices. The total domination number  of G is the minimum cardinality of a total dominating set of G. A total dominating set D is said to be a complete cototal dominating set if the induced subgraph  has no isolated vertices. The complete cototal domination number  of G is the minimum cardinality of a complete cototal dominating set of G. In this paper, we initiate the study of complete cototal domination in graphs and present bounds and some exact values for . Also its relationship with other domination parameters are established and related two open problems are explored.Keywords: Domination number; Total domination number; Cototal domination number; Complete cototal domination number.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i3.7744               J. Sci. Res. 3 (3), 557-565 (2011)


2015 ◽  
Vol 7 (3) ◽  
pp. 43-51
Author(s):  
M. H. Muddebihal ◽  
P Shekanna ◽  
S. Ahmed

A dominating set D ? V[BS(G)] is a split dominating set in [BS(G)] if the induced subgraph  ?V[BS(G)] - D? is disconnected in [BS(G)]. The split domination number of [BS(G)] is denoted by ?sbs(G), is the minimum cardinality of a split dominating  set in   [BS(G)]. In this paper, some results on ?sbs(G) were obtained interms of vertices, blocks and other different parameters of G but not the members of [BS(G)]. Further we develop its relationship with other different domination parameters of G. 


2020 ◽  
Vol 12 (06) ◽  
pp. 2050084
Author(s):  
John Joy Mulloor ◽  
V. Sangeetha

Let [Formula: see text] be a graph with edge set [Formula: see text] and vertex set [Formula: see text]. For a connected graph [Formula: see text], a vertex set [Formula: see text] of [Formula: see text] is said to be a geodetic set if every vertex in [Formula: see text] lies in a shortest path between any pair of vertices in [Formula: see text]. If the geodetic set [Formula: see text] is dominating, then [Formula: see text] is geodetic dominating set. A vertex set [Formula: see text] of [Formula: see text] is said to be a restrained geodetic dominating set if [Formula: see text] is geodetic, dominating and the subgraph induced by [Formula: see text] has no isolated vertex. The minimum cardinality of such set is called restrained geodetic domination (rgd) number. In this paper, rgd number of certain classes of graphs and 2-self-centered graphs was discussed. The restrained geodetic domination is discussed in graph operations such as Cartesian product and join of graphs. Restrained geodetic domination in corona product between a general connected graph and some classes of graphs is also discussed in this paper.


2015 ◽  
Vol 07 (02) ◽  
pp. 1550010 ◽  
Author(s):  
I. Sahul Hamid ◽  
S. Balamurugan

A set S of vertices of a graph G is called a dominating set of G if every vertex in V(G) - S is adjacent to a vertex in S. A dominating set S such that the subgraph 〈S〉 induced by S has at least one isolated vertex is called an isolate dominating set. The minimum cardinality of an isolate dominating set is called the isolate domination number and is denoted by γ0(G). This concept was introduced in [I. Sahul Hamid and S. Balamurugan, Isolate domination in graphs (Communicated)] and further studied in [I. Sahul Hamid and S. Balamurugan, Extended chain of domination parameters in graphs, ISRN Combin. 2013 (2013), Article ID: 792743, 4 pp.; Isolate domination and maximum degree, Bull. Int. Math. Virtual Inst. 3 (2013) 127–133; Isolate domination in unicyclic graphs, Int. J. Math. Soft Comput. 3(3) (2013) 79–83]. This paper studies the effect of the removal of a vertex upon the isolate domination number.


Sign in / Sign up

Export Citation Format

Share Document