On the domination number of a graph and its total graph

2020 ◽  
Vol 12 (05) ◽  
pp. 2050068
Author(s):  
E. Murugan ◽  
J. Paulraj Joseph

In this paper, we investigate the upper and lower bounds for the sum of domination number of a graph and its total graph and characterize the extremal graphs.

2021 ◽  
Vol 7 (2) ◽  
pp. 2529-2542
Author(s):  
Chang Liu ◽  
◽  
Jianping Li

<abstract><p>The zeroth-order general Randić index of graph $ G = (V_G, E_G) $, denoted by $ ^0R_{\alpha}(G) $, is the sum of items $ (d_{v})^{\alpha} $ over all vertices $ v\in V_G $, where $ \alpha $ is a pertinently chosen real number. In this paper, we obtain the sharp upper and lower bounds on $ ^0R_{\alpha} $ of trees with a given domination number $ \gamma $, for $ \alpha\in(-\infty, 0)\cup(1, \infty) $ and $ \alpha\in(0, 1) $, respectively. The corresponding extremal graphs of these bounds are also characterized.</p></abstract>


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2016 ◽  
Vol 08 (03) ◽  
pp. 1650040 ◽  
Author(s):  
Shaohui Wang ◽  
Bing Wei

Let [Formula: see text] be multiplicative Zagreb index of a graph [Formula: see text]. A connected graph is a cactus graph if and only if any two of its cycles have at most one vertex in common, which is a generalization of trees and has been the interest of researchers in the field of material chemistry and graph theory. In this paper, we use a new tool to obtain the upper and lower bounds of [Formula: see text] for all cactus graphs and characterize the corresponding extremal graphs.


2019 ◽  
Vol 17 (1) ◽  
pp. 668-676
Author(s):  
Tingzeng Wu ◽  
Huazhong Lü

Abstract Let G be a connected graph and u and v two vertices of G. The hyper-Wiener index of graph G is $\begin{array}{} WW(G)=\frac{1}{2}\sum\limits_{u,v\in V(G)}(d_{G}(u,v)+d^{2}_{G}(u,v)) \end{array}$, where dG(u, v) is the distance between u and v. In this paper, we first give the recurrence formulae for computing the hyper-Wiener indices of polyphenyl chains and polyphenyl spiders. We then obtain the sharp upper and lower bounds for the hyper-Wiener index among polyphenyl chains and polyphenyl spiders, respectively. Moreover, the corresponding extremal graphs are determined.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Wei Gao ◽  
Muhammad Kamran Jamil ◽  
Aisha Javed ◽  
Mohammad Reza Farahani ◽  
Shaohui Wang ◽  
...  

The hyper-Zagreb index is an important branch in the Zagreb indices family, which is defined as∑uv∈E(G)‍(d(u)+d(v))2, whered(v)is the degree of the vertexvin a graphG=(V(G),E(G)). In this paper, the monotonicity of the hyper-Zagreb index under some graph transformations was studied. Using these nice mathematical properties, the extremal graphs amongn-vertex trees (acyclic), unicyclic, and bicyclic graphs are determined for hyper-Zagreb index. Furthermore, the sharp upper and lower bounds on the hyper-Zagreb index of these graphs are provided.


2019 ◽  
Vol 12 (01) ◽  
pp. 2050002 ◽  
Author(s):  
Sayinath Udupa ◽  
R. S. Bhat

Let [Formula: see text] be a graph. A vertex [Formula: see text] strongly (weakly) b-dominates block [Formula: see text] if [Formula: see text] ([Formula: see text]) for every vertex [Formula: see text] in the block [Formula: see text]. A set [Formula: see text] is said to be strong (weak) vb-dominating set (SVBD-set) (WVBD-set) if every block in [Formula: see text] is strongly (weakly) b-dominated by some vertex in [Formula: see text]. The strong (weak) vb-domination number [Formula: see text] ([Formula: see text]) is the order of a minimum SVBD (WVBD) set of [Formula: see text]. A set [Formula: see text] is said to be strong (weak) vertex block independent set (SVBI-set (WVBI-set)) if [Formula: see text] is a vertex block independent set and for every vertex [Formula: see text] and every block [Formula: see text] incident on [Formula: see text], there exists a vertex [Formula: see text] in the block [Formula: see text] such that [Formula: see text] ([Formula: see text]). The strong (weak) vb-independence number [Formula: see text] ([Formula: see text]) is the cardinality of a maximum strong (weak) vertex block independent set (SVBI-set) (WVBI-set) of [Formula: see text]. In this paper, we investigate some relationships between these four parameters. Several upper and lower bounds are established. In addition, we characterize the graphs attaining some of the bounds.


Author(s):  
Aleksandar Kartelj ◽  
Milana Grbic ◽  
Dragan Matic ◽  
Vladimir Filipovic

In this paper we study the Roman domination number of some classes of planar graphs - convex polytopes: An, Rn and Tn. We establish the exact values of Roman domination number for: An, R3k, R3k+1, T8k, T8k+2, T8k+3, T8k+5 and T8k+6. For R3k+2, T8k+1, T8k+4 and T8k-1 we propose new upper and lower bounds, proving that the gap between the bounds is 1 for all cases except for the case of T8k+4, where the gap is 2.


2017 ◽  
Vol 09 (02) ◽  
pp. 1750024 ◽  
Author(s):  
D. A. Mojdeh ◽  
Babak Samadi

In this paper, we study the signed [Formula: see text]-domination and its total version in graphs. By a simple uniform approach we give some new upper and lower bounds on these two parameters of a graph in terms of several different graph parameters. In this way, we can improve and generalize some results in literature. Moreover, we make use of the well-known theorem of Turán [On an extremal problem in graph theory, Math. Fiz. Lapok 48 (1941) 436–452] to bound the signed total [Formula: see text]-domination number, [Formula: see text], of a [Formula: see text]-free graph [Formula: see text] for [Formula: see text].


2022 ◽  
Vol 2022 ◽  
pp. 1-5
Author(s):  
M. Hajjari ◽  
H. Abdollahzadeh Ahangar ◽  
R. Khoeilar ◽  
Z. Shao ◽  
S. M. Sheikholeslami

In this paper, we derive sharp upper and lower bounds on the sum γ 3 R G + γ 3 R G ¯ and product γ 3 R G γ 3 R G ¯ , where G ¯ is the complement of graph G . We also show that for each tree T of order n ≥ 2 , γ 3 R T ≤ 3 n + s T / 2 and γ 3 R T ≥ ⌈ 4 n T + 2 − ℓ T / 3 ⌉ , where s T and ℓ T are the number of support vertices and leaves of T .


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1438 ◽  
Author(s):  
Abel Cabrera Martínez ◽  
Dorota Kuziak ◽  
Iztok Peterin ◽  
Ismael G. Yero

Given a graph G without isolated vertices, a total Roman dominating function for G is a function f:V(G)→{0,1,2} such that every vertex u with f(u)=0 is adjacent to a vertex v with f(v)=2, and the set of vertices with positive labels induces a graph of minimum degree at least one. The total Roman domination number γtR(G) of G is the smallest possible value of ∑v∈V(G)f(v) among all total Roman dominating functions f. The total Roman domination number of the direct product G×H of the graphs G and H is studied in this work. Specifically, several relationships, in the shape of upper and lower bounds, between γtR(G×H) and some classical domination parameters for the factors are given. Characterizations of the direct product graphs G×H achieving small values (≤7) for γtR(G×H) are presented, and exact values for γtR(G×H) are deduced, while considering various specific direct product classes.


Sign in / Sign up

Export Citation Format

Share Document