scholarly journals Dominating the Direct Product of Two Graphs through Total Roman Strategies

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1438 ◽  
Author(s):  
Abel Cabrera Martínez ◽  
Dorota Kuziak ◽  
Iztok Peterin ◽  
Ismael G. Yero

Given a graph G without isolated vertices, a total Roman dominating function for G is a function f:V(G)→{0,1,2} such that every vertex u with f(u)=0 is adjacent to a vertex v with f(v)=2, and the set of vertices with positive labels induces a graph of minimum degree at least one. The total Roman domination number γtR(G) of G is the smallest possible value of ∑v∈V(G)f(v) among all total Roman dominating functions f. The total Roman domination number of the direct product G×H of the graphs G and H is studied in this work. Specifically, several relationships, in the shape of upper and lower bounds, between γtR(G×H) and some classical domination parameters for the factors are given. Characterizations of the direct product graphs G×H achieving small values (≤7) for γtR(G×H) are presented, and exact values for γtR(G×H) are deduced, while considering various specific direct product classes.

Author(s):  
Hossein Abdollahzadeh Ahangar ◽  
Jafar Amjadi ◽  
Mustapha Chellali ◽  
S. Kosari ◽  
Vladimir Samodivkin ◽  
...  

Let $G=(V,E)$ be a simple graph with vertex set $V$ and edge set $E$. A mixed Roman dominating function (MRDF) of $G$ is a function $f:V\cup E\rightarrow \{0,1,2\}$ satisfying the condition that every element $x\in V\cup E$ for which $f(x)=0$ is adjacent or incident to at least one element $% y\in V\cup E$ for which $f(y)=2$. The weight of a mixed Roman dominating function $f$ is $\omega (f)=\sum_{x\in V\cup E}f(x)$. The mixed Roman domination number $\gamma _{R}^{\ast }(G)$ of $G$ is the minimum weight of a mixed Roman dominating function of $G$. We first show that the problem of computing $\gamma _{R}^{\ast }(G)$ is NP-complete for bipartite graphs and then we present upper and lower bounds on the mixed Roman domination number, some of them are for the class of trees.


2016 ◽  
Vol 10 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Mustapha Chellali ◽  
Teresa Haynes ◽  
Stephen Hedetniemi

A Roman dominating function (RDF) on a graph G is a function f : V (G) ? {0,1,2} satisfying the condition that every vertex u with f(u) = 0 is adjacent to at least one vertex v of G for which f(v) = 2. The weight of a Roman dominating function is the sum f(V) = ?v?V f(v), and the minimum weight of a Roman dominating function f is the Roman domination number ?R(G). An RDF f is called an independent Roman dominating function (IRDF) if the set of vertices assigned positive values under f is independent. The independent Roman domination number iR(G) is the minimum weight of an IRDF on G. We show that for every nontrivial connected graph G with maximum degree ?, ?R(G)? ?+1/??(G) and iR(G) ? i(G) + ?(G)/?, where ?(G) and i(G) are, respectively, the domination and independent domination numbers of G. Moreover, we characterize the connected graphs attaining each lower bound. We give an additional lower bound for ?R(G) and compare our two new bounds on ?R(G) with some known lower bounds.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1850 ◽  
Author(s):  
Abel Cabrera Martínez ◽  
Suitberto Cabrera García ◽  
Andrés Carrión García ◽  
Frank A. Hernández Mira

Let G be a graph with no isolated vertex and f:V(G)→{0,1,2} a function. If f satisfies that every vertex in the set {v∈V(G):f(v)=0} is adjacent to at least one vertex in the set {v∈V(G):f(v)=2}, and if the subgraph induced by the set {v∈V(G):f(v)≥1} has no isolated vertex, then we say that f is a total Roman dominating function on G. The minimum weight ω(f)=∑v∈V(G)f(v) among all total Roman dominating functions f on G is the total Roman domination number of G. In this article we study this parameter for the rooted product graphs. Specifically, we obtain closed formulas and tight bounds for the total Roman domination number of rooted product graphs in terms of domination invariants of the factor graphs involved in this product.


2021 ◽  
Vol 6 (10) ◽  
pp. 11084-11096
Author(s):  
Abel Cabrera Martínez ◽  
◽  
Iztok Peterin ◽  
Ismael G. Yero ◽  
◽  
...  

<abstract><p>Let $ G $ be a graph with vertex set $ V(G) $. A function $ f:V(G)\rightarrow \{0, 1, 2\} $ is a Roman dominating function on $ G $ if every vertex $ v\in V(G) $ for which $ f(v) = 0 $ is adjacent to at least one vertex $ u\in V(G) $ such that $ f(u) = 2 $. The Roman domination number of $ G $ is the minimum weight $ \omega(f) = \sum_{x\in V(G)}f(x) $ among all Roman dominating functions $ f $ on $ G $. In this article we study the Roman domination number of direct product graphs and rooted product graphs. Specifically, we give several tight lower and upper bounds for the Roman domination number of direct product graphs involving some parameters of the factors, which include the domination, (total) Roman domination, and packing numbers among others. On the other hand, we prove that the Roman domination number of rooted product graphs can attain only three possible values, which depend on the order, the domination number, and the Roman domination number of the factors in the product. In addition, theoretical characterizations of the classes of rooted product graphs achieving each of these three possible values are given.</p></abstract>


Author(s):  
Yongsheng Rao ◽  
Saeed Kosari ◽  
Seyed Mahmoud Sheikholeslami ◽  
M. Chellali ◽  
Mahla Kheibari

An outer-independent double Roman dominating function (OIDRDF) of a graph G is a function h:V(G)→{0,1,2,3} such that i) every vertex v with f(v)=0 is adjacent to at least one vertex with label 3 or to at least two vertices with label 2, ii) every vertex v with f(v)=1 is adjacent to at least one vertex with label greater than 1, and iii) all vertices labeled by 0 are an independent set. The weight of an OIDRDF is the sum of its function values over all vertices. The outer-independent double Roman domination number γoidR (G) is the minimum weight of an OIDRDF on G. It has been shown that for any tree T of order n ≥ 3, γoidR (T) ≤ 5n/4 and the problem of characterizing those trees attaining equality was raised. In this article, we solve this problem and we give additional bounds on the outer-independent double Roman domination number. In particular, we show that, for any connected graph G of order n with minimum degree at least two in which the set of vertices with degree at least three is independent, γoidR (T) ≤ 4n/3.


2013 ◽  
Vol 7 (2) ◽  
pp. 262-274 ◽  
Author(s):  
Yero González ◽  
Juan Rodríguez-Velázquez

A map f : V ? {0, 1, 2} is a Roman dominating function for G if for every vertex v with f(v) = 0, there exists a vertex u, adjacent to v, with f(u) = 2. The weight of a Roman dominating function is f(V ) = ?u?v f(u). The minimum weight of a Roman dominating function on G is the Roman domination number of G. In this article we study the Roman domination number of Cartesian product graphs and strong product graphs.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1318
Author(s):  
Zheng Kou ◽  
Saeed Kosari ◽  
Guoliang Hao ◽  
Jafar Amjadi ◽  
Nesa Khalili

This paper is devoted to the study of the quadruple Roman domination in trees, and it is a contribution to the Special Issue “Theoretical computer science and discrete mathematics” of Symmetry. For any positive integer k, a [k]-Roman dominating function ([k]-RDF) of a simple graph G is a function from the vertex set V of G to the set {0,1,2,…,k+1} if for any vertex u∈V with f(u)<k, ∑x∈N(u)∪{u}f(x)≥|{x∈N(u):f(x)≥1}|+k, where N(u) is the open neighborhood of u. The weight of a [k]-RDF is the value Σv∈Vf(v). The minimum weight of a [k]-RDF is called the [k]-Roman domination number γ[kR](G) of G. In this paper, we establish sharp upper and lower bounds on γ[4R](T) for nontrivial trees T and characterize extremal trees.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 336
Author(s):  
Zehui Shao ◽  
Rija Erveš ◽  
Huiqin Jiang ◽  
Aljoša Peperko ◽  
Pu Wu ◽  
...  

A double Roman dominating function on a graph G=(V,E) is a function f:V→{0,1,2,3} with the properties that if f(u)=0, then vertex u is adjacent to at least one vertex assigned 3 or at least two vertices assigned 2, and if f(u)=1, then vertex u is adjacent to at least one vertex assigned 2 or 3. The weight of f equals w(f)=∑v∈Vf(v). The double Roman domination number γdR(G) of a graph G is the minimum weight of a double Roman dominating function of G. A graph is said to be double Roman if γdR(G)=3γ(G), where γ(G) is the domination number of G. We obtain the sharp lower bound of the double Roman domination number of generalized Petersen graphs P(3k,k), and we construct solutions providing the upper bounds, which gives exact values of the double Roman domination number for all generalized Petersen graphs P(3k,k). This implies that P(3k,k) is a double Roman graph if and only if either k≡0 (mod 3) or k∈{1,4}.


Author(s):  
P. Roushini Leely Pushpam ◽  
B. Mahavir ◽  
M. Kamalam

Let [Formula: see text] be a graph and [Formula: see text] be a Roman dominating function defined on [Formula: see text]. Let [Formula: see text] be some ordering of the vertices of [Formula: see text]. For any [Formula: see text], [Formula: see text] is defined by [Formula: see text]. If for all [Formula: see text], [Formula: see text], we have [Formula: see text], that is [Formula: see text], for some [Formula: see text], then [Formula: see text] is called a resolving Roman dominating function (RDF) on [Formula: see text]. The weight of a resolving RDF [Formula: see text] on [Formula: see text] is [Formula: see text]. The minimum weight of a resolving RDF on [Formula: see text] is called the resolving Roman domination number of [Formula: see text] and is denoted by [Formula: see text]. A resolving RDF on [Formula: see text] with weight [Formula: see text] is called a [Formula: see text]-function on [Formula: see text]. In this paper, we find the resolving Roman domination number of certain well-known classes of graphs. We also categorize the class of graphs whose resolving Roman domination number equals their order.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050020
Author(s):  
S. Nazari-Moghaddam ◽  
L. Volkmann

A double Roman dominating function (DRDF) on a graph [Formula: see text] is a function [Formula: see text] such that (i) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least two vertices assigned a [Formula: see text] or to at least one vertex assigned a [Formula: see text] and (ii) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text] The weight of a DRDF is the sum of its function values over all vertices. The double Roman domination number [Formula: see text] equals the minimum weight of a DRDF on [Formula: see text] The concept of criticality with respect to various operations on graphs has been studied for several domination parameters. In this paper, we study the concept of criticality for double Roman domination in graphs. In addition, we characterize double Roman domination edge super critical graphs and we will give several characterizations for double Roman domination vertex (edge) critical graphs.


Sign in / Sign up

Export Citation Format

Share Document