scholarly journals MONTE CARLO SIMULATION OF SPIN RELAXATION IN NANOWIRES AND 2-D CHANNELS OF II–VI SEMICONDUCTORS

SPIN ◽  
2012 ◽  
Vol 02 (02) ◽  
pp. 1250007 ◽  
Author(s):  
ASHUTOSH SHARMA ◽  
SWETALI NIMJE ◽  
AKSHAYKUMAR SALIMATH ◽  
BAHNIMAN GHOSH

We have analyzed spin relaxation behavior of various II–VI semiconductors for nanowire structure and 2-D channel by simulating spin polarized transport through a semiclassical approach. Monte Carlo simulation method has been applied to simulate our model. D'yakonov–Perel mechanism and Elliot–Yafet mechanism are dominant for spin relaxation in II–VI semiconductors. Variation in spin relaxation length with external field has been analyzed and comparison is drawn between nanowire and 2-D channels. Spin relaxation lengths of various II–VI semiconductors are compared at an external field of 1 kV/cm to understand the predominant factors affecting spin dephasing in them. Among the many results obtained, most noticeable one is that spin relaxation length in nanowires is many times greater than that in 2-D channel.

2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Ashish Kumar ◽  
M. W. Akram ◽  
Bahniman Ghosh

We use semiclassical Monte Carlo approach along with spin density matrix calculations to model spin polarized electron transport. The model is applied to germanium nanowires and germanium two-dimensional channels to study and compare spin relaxation between them. Spin dephasing in germanium occurs because of Rashba Spin Orbit Interaction (structural inversion asymmetry) which gives rise to the D’yakonov-Perel (DP) relaxation. In germanium spin flip scattering due to the Elliot-Yafet (EY) mechanism also leads to spin relaxation. The spin relaxation tests for both 1D and 2D channels are carried out at different values of temperature and driving electric field, and the variation in spin relaxation length is recorded. Spin relaxation length in a nanowire is found to be much higher than that in a 2D channel due to suppression of DP relaxation in a nanowire. At lower temperatures the spin relaxation length increases. This suggests that spin relaxation in germanium occurs slowly in a 1D channel (nanowires) and at lower temperatures. The electric field dependence of spin relaxation length was found to be very weak.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2885
Author(s):  
Daniel Losada ◽  
Ameena Al-Sumaiti ◽  
Sergio Rivera

This article presents the development, simulation and validation of the uncertainty cost functions for a commercial building with climate-dependent controllable loads, located in Florida, USA. For its development, statistical data on the energy consumption of the building in 2016 were used, along with the deployment of kernel density estimator to characterize its probabilistic behavior. For validation of the uncertainty cost functions, the Monte-Carlo simulation method was used to make comparisons between the analytical results and the results obtained by the method. The cost functions found differential errors of less than 1%, compared to the Monte-Carlo simulation method. With this, there is an analytical approach to the uncertainty costs of the building that can be used in the development of optimal energy dispatches, as well as a complementary method for the probabilistic characterization of the stochastic behavior of agents in the electricity sector.


Author(s):  
محمد الأمين ◽  
بن حامد عبد الغني ◽  
مراس محمد

Our research aims to try to present the modeling mechanisms in the field of simulation and quantitative methods. The research is a presentation of the role of quantitative methods in making investment project evaluation decisions, more than that and is the use of the Monte Carlo simulation model in evaluation and multi-period analysis of investment projects under conditions Risk and uncertainty. And highlighting the theoretical, scientific and practical importance of the Monte Carlo simulation method in particular, and the importance of using quantitative methods in helping to make decisions in general


Sign in / Sign up

Export Citation Format

Share Document