GPU Elastic Modeling Using an Optimal Staggered-Grid Finite-Difference Operator

2018 ◽  
Vol 26 (02) ◽  
pp. 1850005 ◽  
Author(s):  
Jian Wang ◽  
Xiaohong Meng ◽  
Hong Liu ◽  
Wanqiu Zheng ◽  
Zhiwei Liu

Staggered-grid finite-difference forward modeling in the time domain has been widely used in reverse time migration and full waveform inversion because of its low memory cost and ease to implementation on GPU, however, high dominant frequency of wavelet and big grid interval could result in significant numerical dispersion. To suppress numerical dispersion, in this paper, we first derive a new weighted binomial window function (WBWF) for staggered-grid finite-difference, and two new parameters are included in this new window function. Then we analyze different characteristics of the main and side lobes of the amplitude response under different parameters and accuracy of the numerical solution between the WBWF method and some other optimum methods which denotes our new method can drive a better finite difference operator. Finally, we perform elastic wave numerical forward modeling which denotes that our method is more efficient than other optimum methods without extra computing costs.

Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. T359-T373
Author(s):  
Jeffrey Shragge ◽  
Tugrul Konuk

Numerical solutions of 3D isotropic elastodynamics form the key computational kernel for many isotropic elastic reverse time migration and full-waveform inversion applications. However, real-life scenarios often require computing solutions for computational domains characterized by non-Cartesian geometry (e.g., free-surface topography). One solution strategy is to compute the elastodynamic response on vertically deformed meshes designed to incorporate irregular topology. Using a tensorial formulation, we have developed and validated a novel system of semianalytic equations governing 3D elastodynamics in a stress-velocity formulation for a family of vertically deformed meshes defined by Bézier interpolation functions between two (or more) nonintersecting surfaces. The analytic coordinate definition also leads to a corresponding analytic free-surface boundary condition (FSBC) as well as expressions for wavefield injection and extraction. Theoretical examples illustrate the utility of the tensorial approach in generating analytic equations of 3D elastodynamics and the corresponding FSBCs for scenarios involving free-surface topography. Numerical examples developed using a fully staggered grid with a mimetic finite-difference formulation demonstrate the ability to model the expected full-wavefield behavior, including complex free-surface interactions.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCA153-WCA158 ◽  
Author(s):  
Faqi Liu ◽  
Guanquan Zhang ◽  
Scott A. Morton ◽  
Jacques P. Leveille

The acoustic wave equation has been widely used for the modeling and reverse time migration of seismic data. Numerical implementation of this equation via finite-difference techniques has established itself as a valuable approach and has long been a favored choice in the industry. To ensure quality results, accurate approximations are required for spatial and time derivatives. Traditionally, they are achieved numerically by using either relatively very fine computation grids or very long finite-difference operators. Otherwise, the numerical error, known as numerical dispersion, is present in the data and contaminates the signals. However, either approach will result in a considerable increase in the computational cost. A simple and computationally low-cost modification to the standard acoustic wave equation is presented to suppress numerical dispersion. This dispersion attenuator is one analogy of the antialiasing operator widely applied in Kirchhoff migration. When the new wave equation is solved numerically using finite-difference schemes, numerical dispersion in the original wave equation is attenuated significantly, leading to a much more accurate finite-difference scheme with little additional computational cost. Numerical tests on both synthetic and field data sets in both two and three dimensions demonstrate that the optimized wave equation dramatically improves the image quality by successfully attenuating dispersive noise. The adaptive application of this new wave equation only increases the computational cost slightly.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. T225-T235 ◽  
Author(s):  
Leandro Di Bartolo ◽  
Leandro Lopes ◽  
Luis Juracy Rangel Lemos

Pseudoacoustic algorithms are very fast in comparison with full elastic ones for vertical transversely isotropic (VTI) modeling, so they are suitable for many applications, especially reverse time migration. Finite differences using simple grids are commonly used to solve pseudoacoustic equations. We have developed and implemented general high-order 3D pseudoacoustic transversely isotropic formulations. The focus is the development of staggered-grid finite-difference algorithms, known for their superior numerical properties. The staggered-grid schemes based on first-order velocity-stress wave equations are developed in detail as well as schemes based on direct application to second-order stress equations. This last case uses the recently presented equivalent staggered-grid theory, resulting in a staggered-grid scheme that overcomes the problem of large memory requirement. Two examples are presented: a 3D simulation and a prestack reverse time migration application, and we perform a numerical analysis regarding computational cost and precision. The errors of the new schemes are smaller than the existing nonstaggered-grid schemes. In comparison with existing staggered-grid schemes, they require 25% less memory and only have slightly greater computational cost.


2017 ◽  
Vol 14 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Jian Wang ◽  
Xiao-Hong Meng ◽  
Hong Liu ◽  
Wan-Qiu Zheng ◽  
Sheng Gui

Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. WA3-WA11 ◽  
Author(s):  
Wei Xie ◽  
Dinghui Yang ◽  
Faqi Liu ◽  
Jingshuang Li

With the capability of handling complicated velocity models, reverse-time migration (RTM) has become a powerful imaging method. Improving imaging accuracy and computational efficiency are two significant but challenging tasks in the applications of RTM. Despite being the most popular numerical technique applied in RTM, finite-difference (FD) methods often suffer from undesirable numerical dispersion, leading to a noticeable loss of imaging resolution. A new and effective FD operator, called the high-order stereo operator, has been developed to approximate the partial differential operators in the wave equation, from which a numerical scheme called the three-step stereo method (TSM) has been developed and has shown effectiveness in suppressing numerical dispersion. Numerical results show that compared with the conventional numerical methods such as the Lax-Wendroff correction (LWC) scheme and the staggered-grid (SG) FD method, this new method significantly reduces numerical dispersion and computational cost. Tests on the impulse response and the 2D prestack Hess acoustic VTI model demonstrated that the TSM achieves higher image quality than the LWC and SG methods do, especially when coarse computation grids were used, which indicated that the new method can be a promising algorithm for large-scale anisotropic RTM.


Sign in / Sign up

Export Citation Format

Share Document