scholarly journals Spectral Stochastic Infinite Element Method in Vibroacoustics

2020 ◽  
Vol 28 (02) ◽  
pp. 2050009
Author(s):  
Felix Kronowetter ◽  
Lennart Moheit ◽  
Martin Eser ◽  
Kian K. Sepahvand ◽  
Steffen Marburg

A novel method to solve exterior Helmholtz problems in the case of multipole excitation and random input data is developed. The infinite element method is applied to compute the sound pressure field in the exterior fluid domain. The consideration of random input data leads to a stochastic infinite element formulation. The generalized polynomial chaos expansion of the random data results in the spectral stochastic infinite element method. As a solution technique, the non-intrusive collocation method is chosen. The performance of the spectral stochastic infinite element method is demonstrated for a time-harmonic problem and an eigenfrequency study.

2014 ◽  
Vol 578-579 ◽  
pp. 445-455
Author(s):  
Mustapha Demidem ◽  
Remdane Boutemeur ◽  
Abderrahim Bali ◽  
El-Hadi Benyoussef

The main idea of this paper is to present a smart numerical technique to solve structural and non-structural problems in which the domain of interest extends to large distance in one or more directions. The concerned typical problems may be the underground excavation (tunneling or mining operations) and some heat transfer problems (energy flow rate for construction panels). The proposed numerical technique is based on the coupling between the finite element method (M.E.F.) and the infinite element method (I.E.M.) in an attractive manner taking into consideration the advantages that both methods offer with respect to the near field and the far field (good accuracy and sensible reduction of equations to be solved). In this work, it should be noticed that the using of this numerical coupling technique, based on the infinite element ascent formulation, has introduced a more realistic and economic way to solve unbounded problems for which modeling and efficiency have been elegantly improved. The types of the iso-parametric finite elements used are respectively the eight-nodes (Q8) and the four-nodes (Q4) for the near field. However, for the far field the iso-parametric infinite elements used are the eight-nodes (Q8I) and the six-nodes (Q6I).


Sign in / Sign up

Export Citation Format

Share Document