Impulsive Motion of a Circular Cylinder in a Viscous Fluid at Small Reynolds Numbers

1961 ◽  
Vol 16 (9) ◽  
pp. 1762-1770 ◽  
Author(s):  
Sinzi Kuwabara
1958 ◽  
Vol 4 (1) ◽  
pp. 81-86 ◽  
Author(s):  
R. B. Payne

A numerical solution has been obtained for the starting flow of a viscous fluid past a circular cylinder at Reynolds numbers 40 and 100. The method used is the step-by-step forward integration in time of Helmholtz's vorticity equation. The advantage of working with the vorticity is that calculations can be confined to the region of non-zero vorticity near the cylinder.The general features of the flow, including the formation of the eddies attached to the rear of the cylinder, have been determined, and the drag has been calculated. At R = 40 the drag on the cylinder decreases with time to a value very near that for the steady flow.


1988 ◽  
Vol 23 (1) ◽  
pp. 6-10 ◽  
Author(s):  
M. N. Gaidukov ◽  
V. G. Roman ◽  
Yu. I. Yalamov

It was proposed by Oseen that, in considering the steady flow of a viscous fluid past a fixed obstacle, the velocity of disturbance should be considered small, and terms depending on its square neglected. This approximation is to be taken to hold not only at a great distance from the obstacle, but also right up to its surface; and involves the assumption that U d/v is small, where d is some representative length of the obstacle, which in the case of a sphere is taken to be its diameter, U is the undisturbed velocity of the stream, and v the kinematic viscosity of the fluid. With this approximation, the equations of motion become linear, and can be solved; the condition of no slip at the boundary is then applied to complete the solution. We take the obstacle to be a sphere of radius and take the origin of coordinates at its centre.


1957 ◽  
Vol 2 (3) ◽  
pp. 237-262 ◽  
Author(s):  
Ian Proudman ◽  
J. R. A. Pearson

This paper is concerned with the problem of obtaining higher approximations to the flow past a sphere and a circular cylinder than those represented by the well-known solutions of Stokes and Oseen. Since the perturbation theory arising from the consideration of small non-zero Reynolds numbers is a singular one, the problem is largely that of devising suitable techniques for taking this singularity into account when expanding the solution for small Reynolds numbers.The technique adopted is as follows. Separate, locally valid (in general), expansions of the stream function are developed for the regions close to, and far from, the obstacle. Reasons are presented for believing that these ‘Stokes’ and ‘Oseen’ expansions are, respectively, of the forms $\Sigma \;f_n(R) \psi_n(r, \theta)$ and $\Sigma \; F_n(R) \Psi_n(R_r, \theta)$ where (r, θ) are spherical or cylindrical polar coordinates made dimensionless with the radius of the obstacle, R is the Reynolds number, and $f_{(n+1)}|f_n$ and $F_{n+1}|F_n$ vanish with R. Substitution of these expansions in the Navier-Stokes equation then yields a set of differential equations for the coefficients ψn and Ψn, but only one set of physical boundary conditions is applicable to each expansion (the no-slip conditions for the Stokes expansion, and the uniform-stream condition for the Oseen expansion) so that unique solutions cannot be derived immediately. However, the fact that the two expansions are (in principle) both derived from the same exact solution leads to a ‘matching’ procedure which yields further boundary conditions for each expansion. It is thus possible to determine alternately successive terms in each expansion.The leading terms of the expansions are shown to be closely related to the original solutions of Stokes and Oseen, and detailed results for some further terms are obtained.


1964 ◽  
Vol 20 (2) ◽  
pp. 305-314 ◽  
Author(s):  
Stephen Childress

The uniform, slow motion of a sphere in a viscous fluid is examined in the case where the undisturbed fluid rotates with constant angular velocity Ω and the axis of rotation is taken to coincide with the line of motion. The various modifications of the classical problem for small Reynolds numbers are discussed. The main analytical result is a correction to Stokes's drag formula, valid for small values of the Reynolds number and Taylor number and tending to the classical Oseen correction as the last parameter tends to zero. The rotation of a free sphere relative to the fluid at infinity is also deduced.


Sign in / Sign up

Export Citation Format

Share Document