The Atomic Magnetic Moment in bcc Ternary Iron Alloys Fe(Co Mn) and Fe(Co Cr)

1977 ◽  
Vol 42 (6) ◽  
pp. 1881-1887 ◽  
Author(s):  
Sōji Ōhara ◽  
Sigehiro Komura ◽  
Takayoshi Takeda ◽  
Tadamiki Hihara ◽  
Yukitomo Komura
2021 ◽  
Vol 2 (2) ◽  
Author(s):  
V. I. Kodolov ◽  
V. V. Kodolova-Chukhontseva ◽  
I. N. Shabanova ◽  
N. S. Terebova ◽  
Yu. V. Pershin ◽  
...  

The paper is dedicated to the consideration of the chemical mesoscopics notions application for the explanation of polymeric materials modification mechanism by the metal carbon mesoscopic composites. The main peculiarities of these nanosized particles are following: a) the presence of unpaired electrons on the carbon cover; b) the structure of carbon cover consists from poly acetylene and carbine fragments; c) the atomic magnetic moment of inner metal is equaled to more than 1,3 μB. The creation of reactive mesoscopic materials with regulated magnetic characteristics which can find the application as modifiers of materials properties is very topical. The present investigation has fundamental character. It’s based on the ideas concerning to the metal carbon mesocomposites reactivity depending on the medium and conditions influence because of the possible changes of the phase coherency and quantization of negative charges.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 926-929 ◽  
Author(s):  
I.G. BATIREV ◽  
J.A. LEIRO ◽  
M. HEINONEN

The electronic structure of amorphous and crystalline Fe100–xBx alloys for 14≤x≤19.5 has been studied by x-ray photoelectron spectroscopy and calculated in terms of the modified coherent potential approximation. Exchange splitting measurements of 3s-spectra were used to estimate the atomic magnetic moment of the Fe atom in Fe-B amorphous and crystalline alloys. These results agree qualitatively with saturation magnetization measurements including the deviation from the Slater-Pauling curve. This deviation according to our calculations is the result of the specific charge transfer of s, p and d electrons at about 15.5 at % B. The calculation in ternary alloy approach shows a stable ferromagnetic state of Fe atoms for the studied alloy concentrations.


2021 ◽  
Vol 63 (10) ◽  
pp. 597-603
Author(s):  
Minglun Li ◽  
Han Yao ◽  
Jiarui Feng ◽  
Entao Yao ◽  
Ping Wang ◽  
...  

Metal magnetic memory (MMM) is a widely used non-destructive electromagnetic detection technology. However, the analysis of its underlying principle is still insufficient. The mechanical and magnetic coupling model is a reasonable standpoint from which to study the principle of MMM. In this paper, a mechanical and magnetic coupling model of steel material is established based on density functional theory (DFT) using the CASTEP first-principles analysis software. In order to simulate the practical working environment, the residual magnetism in the rail is assumed to change with the stress on the rail. By applying different stresses to the model, the relationship between the atomic magnetic moment, the lattice constant and stress is explored, as well as the causes of magnetic signals in the stress concentration zone. It is revealed that the atomic magnetic moment and the crystal volume decrease with the increase in compressive stress. The magnetic signal on the surface of the magnetised metal component decreases with the increase in compressive stress, while the tensile stress shows the opposite tendency. Generally speaking, the change in atomic magnetic moment and crystal volume caused by lattice distortion under stress can be seen as the fundamental reason for the change in magnetic signal on the surface of the magnetised metal. The bending experiment of the rail shows that the normal magnetic field decreases with the increase in compressive stress in the stress concentration zone. The conclusion is verified by experiments.


Sign in / Sign up

Export Citation Format

Share Document