scholarly journals On a Perfect-Fluid Sphere with Uniform Density

1968 ◽  
Vol 40 (3) ◽  
pp. 679-681 ◽  
Author(s):  
Hidekazu Nariai ◽  
Kenji Tomita
1968 ◽  
Vol 40 (5) ◽  
pp. 1184-1186 ◽  
Author(s):  
Kenji Tomita ◽  
Hidekazu Nariai

2016 ◽  
Vol 25 (02) ◽  
pp. 1650019 ◽  
Author(s):  
Petarpa Boonserm ◽  
Tritos Ngampitipan ◽  
Matt Visser

We argue that an arbitrary general relativistic static anisotropic fluid sphere, (static and spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully mimicked by suitable linear combinations of theoretically attractive and quite simple classical matter: a classical (charged) isotropic perfect fluid, a classical electromagnetic field and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore, we show how this decomposition relates to the distribution of both electric charge density and scalar charge density throughout the model. The generalized TOV equation implies that the perfect fluid component in this model is automatically in internal equilibrium, with pressure forces, electric forces, and scalar forces balancing the gravitational pseudo-force. Consequently, we can build theoretically attractive matter models that can be used to mimic almost any static spherically symmetric spacetime.


1925 ◽  
Vol 44 ◽  
pp. 72-78
Author(s):  
Jyotirmaya Ghosh

The field-equations of gravitation in Einstein's theory have been solved in the case of an empty space, giving rise to de Sitter's spherical world. In the case of homogeneous matter filling all space, the solution gives Einstein's cylindrical world. The field corresponding to an isolated particle has been obtained by Schwarzchild. He has also obtained a solution for a fluid sphere with uniform density, a problem treated also by Nordström and de Donder. A new solution of the gravitational equations has been obtained in this paper, which corresponds to the field of a heterogeneous fluid sphere, the density at any point being a certain function of the distance of the point from the centre. The law of density is quite simple and such as to give finite density at the centre and gradually diminishing values as the distance from the centre increases, as might be expected of a natural sphere of fluid of large radius. The general problem of the fluid sphere with any arbitrary law of density cannot be solved in exact terms. It will be seen, however, from a theorem obtained in this paper, that the solution depends on a linear differential equation of the second order with variable coefficients involving the density, and thus the laws of density for which the problem admits of exact solution are those for which the above coefficients satisfy the conditions of integrability of the differential equation. An approximate solution for any law of density may be obtained by the method of series.


2021 ◽  
Author(s):  
◽  
Petarpa Boonserm

<p><b>In this thesis four separate problems in general relativity are considered, dividedinto two separate themes: coordinate conditions and perfect fluid spheres. Regardingcoordinate conditions we present a pedagogical discussion of how the appropriateuse of coordinate conditions can lead to simplifications in the form of the spacetimecurvature — such tricks are often helpful when seeking specific exact solutions of theEinstein equations. Regarding perfect fluid spheres we present several methods oftransforming any given perfect fluid sphere into a possibly new perfect fluid sphere.</b></p> <p>This is done in three qualitatively distinct manners: The first set of solution generatingtheorems apply in Schwarzschild curvature coordinates, and are phrased in termsof the metric components: they show how to transform one static spherical perfectfluid spacetime geometry into another. A second set of solution generating theoremsextends these ideas to other coordinate systems (such as isotropic, Gaussian polar,Buchdahl, Synge, and exponential coordinates), again working directly in terms of themetric components. Finally, the solution generating theorems are rephrased in termsof the TOV equation and density and pressure profiles. Most of the relevant calculationsare carried out analytically, though some numerical explorations are also carriedout.</p>


2017 ◽  
Author(s):  
Tritos Ngampitipan ◽  
◽  
Petarpa Boonserm ◽  
Apisit Kinreewong ◽  
◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document