higher dimensional space time
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 1)

H-INDEX

10
(FIVE YEARS 0)

2017 ◽  
Vol 32 (26) ◽  
pp. 1750160 ◽  
Author(s):  
Yan Peng ◽  
Guohua Liu

We investigate the holographic superconductor model constructed in the (2[Formula: see text]+[Formula: see text]1)-dimensional AdS soliton background in the probe limit. With analytical methods, we obtain the formula of critical phase transition points with respect to the scalar mass. We also generalize this formula to higher-dimensional space–time. We mention that these formulas are precise compared to numerical results. In addition, we find a correspondence between the value of the charged scalar field at the tip and the scalar operator at infinity around the phase transition points.


2017 ◽  
Vol 3 ◽  
pp. e123 ◽  
Author(s):  
Ken Arroyo Ohori ◽  
Hugo Ledoux ◽  
Jantien Stoter

Objects of more than three dimensions can be used to model geographic phenomena that occur in space, time and scale. For instance, a single 4D object can be used to represent the changes in a 3D object’s shape across time or all its optimal representations at various levels of detail. In this paper, we look at how such higher-dimensional space-time and space-scale objects can be visualised as projections from ℝ4to ℝ3. We present three projections that we believe are particularly intuitive for this purpose: (i) a simple ‘long axis’ projection that puts 3D objects side by side; (ii) the well-known orthographic and perspective projections; and (iii) a projection to a 3-sphere (S3) followed by a stereographic projection to ℝ3, which results in an inwards-outwards fourth axis. Our focus is in using these projections from ℝ4to ℝ3, but they are formulated from ℝnto ℝn−1so as to be easily extensible and to incorporate other non-spatial characteristics. We present a prototype interactive visualiser that applies these projections from 4D to 3D in real-time using the programmable pipeline and compute shaders of the Metal graphics API.


2017 ◽  
Author(s):  
Ken Arroyo Ohori ◽  
Hugo Ledoux ◽  
Jantien Stoter

Objects of more than three dimensions can be used to model geographic phenomena that occur in space, time and scale. For instance, a single 4D object can be used to represent the changes in a 3D object's shape across time or all its optimal representations at various levels of detail. In this paper, we look at how such higher-dimensional space-time and space-scale objects can be visualised as projections from \(\mathbb{R}^4\) to \(\mathbb{R}^3\). We present three projections that we believe are particularly intuitive for this purpose: (i) a simple `long axis' projection that puts 3D objects side by side; (ii) the well-known orthographic and perspective projections; and (iii) a projection to a 3-sphere (\(S^3\)) followed by a stereographic projection to \(\mathbb{R}^3\), which results in an inwards-outwards fourth axis. Our focus is in using these projections from \(\mathbb{R}^4\) to \(\mathbb{R}^3\), but they are formulated from \(\mathbb{R}^n\) to \(\mathbb{R}^{n-1}\) so as to be easily extensible and to incorporate other non-spatial characteristics. We present a prototype interactive visualiser that applies these projections from 4D to 3D in real-time using the programmable pipeline and compute shaders of the Metal graphics API.


2017 ◽  
Author(s):  
Ken Arroyo Ohori ◽  
Hugo Ledoux ◽  
Jantien Stoter

Objects of more than three dimensions can be used to model geographic phenomena that occur in space, time and scale. For instance, a single 4D object can be used to represent the changes in a 3D object's shape across time or all its optimal representations at various levels of detail. In this paper, we look at how such higher-dimensional space-time and space-scale objects can be visualised as projections from \(\mathbb{R}^4\) to \(\mathbb{R}^3\). We present three projections that we believe are particularly intuitive for this purpose: (i) a simple `long axis' projection that puts 3D objects side by side; (ii) the well-known orthographic and perspective projections; and (iii) a projection to a 3-sphere (\(S^3\)) followed by a stereographic projection to \(\mathbb{R}^3\), which results in an inwards-outwards fourth axis. Our focus is in using these projections from \(\mathbb{R}^4\) to \(\mathbb{R}^3\), but they are formulated from \(\mathbb{R}^n\) to \(\mathbb{R}^{n-1}\) so as to be easily extensible and to incorporate other non-spatial characteristics. We present a prototype interactive visualiser that applies these projections from 4D to 3D in real-time using the programmable pipeline and compute shaders of the Metal graphics API.


Sign in / Sign up

Export Citation Format

Share Document