scholarly journals Quality-driven geospatial data integration

Author(s):  
Snehal Thakkar ◽  
Craig A. Knoblock ◽  
Jose Luis Ambite
2019 ◽  
pp. 254-277 ◽  
Author(s):  
Ying Zhang ◽  
Chaopeng Li ◽  
Na Chen ◽  
Shaowen Liu ◽  
Liming Du ◽  
...  

Since large amount of geospatial data are produced by various sources, geospatial data integration is difficult because of the shortage of semantics. Despite standardised data format and data access protocols, such as Web Feature Service (WFS), can enable end-users with access to heterogeneous data stored in different formats from various sources, it is still time-consuming and ineffective due to the lack of semantics. To solve this problem, a prototype to implement the geospatial data integration is proposed by addressing the following four problems, i.e., geospatial data retrieving, modeling, linking and integrating. We mainly adopt four kinds of geospatial data sources to evaluate the performance of the proposed approach. The experimental results illustrate that the proposed linking method can get high performance in generating the matched candidate record pairs in terms of Reduction Ratio(RR), Pairs Completeness(PC), Pairs Quality(PQ) and F-score. The integrating results denote that each data source can get much Complementary Completeness(CC) and Increased Completeness(IC).


2019 ◽  
pp. 230-253
Author(s):  
Ying Zhang ◽  
Chaopeng Li ◽  
Na Chen ◽  
Shaowen Liu ◽  
Liming Du ◽  
...  

Since large amount of geospatial data are produced by various sources and stored in incompatible formats, geospatial data integration is difficult because of the shortage of semantics. Despite standardised data format and data access protocols, such as Web Feature Service (WFS), can enable end-users with access to heterogeneous data stored in different formats from various sources, it is still time-consuming and ineffective due to the lack of semantics. To solve this problem, a prototype to implement the geospatial data integration is proposed by addressing the following four problems, i.e., geospatial data retrieving, modeling, linking and integrating. First, we provide a uniform integration paradigm for users to retrieve geospatial data. Then, we align the retrieved geospatial data in the modeling process to eliminate heterogeneity with the help of Karma. Our main contribution focuses on addressing the third problem. Previous work has been done by defining a set of semantic rules for performing the linking process. However, the geospatial data has some specific geospatial relationships, which is significant for linking but cannot be solved by the Semantic Web techniques directly. We take advantage of such unique features about geospatial data to implement the linking process. In addition, the previous work will meet a complicated problem when the geospatial data sources are in different languages. In contrast, our proposed linking algorithms are endowed with translation function, which can save the translating cost among all the geospatial sources with different languages. Finally, the geospatial data is integrated by eliminating data redundancy and combining the complementary properties from the linked records. We mainly adopt four kinds of geospatial data sources, namely, OpenStreetMap(OSM), Wikmapia, USGS and EPA, to evaluate the performance of the proposed approach. The experimental results illustrate that the proposed linking method can get high performance in generating the matched candidate record pairs in terms of Reduction Ratio(RR), Pairs Completeness(PC), Pairs Quality(PQ) and F-score. The integrating results denote that each data source can get much Complementary Completeness(CC) and Increased Completeness(IC).


Author(s):  
Ying Zhang ◽  
Chaopeng Li ◽  
Na Chen ◽  
Shaowen Liu ◽  
Liming Du ◽  
...  

Since large amount of geospatial data are produced by various sources, geospatial data integration is difficult because of the shortage of semantics. Despite standardised data format and data access protocols, such as Web Feature Service (WFS), can enable end-users with access to heterogeneous data stored in different formats from various sources, it is still time-consuming and ineffective due to the lack of semantics. To solve this problem, a prototype to implement the geospatial data integration is proposed by addressing the following four problems, i.e., geospatial data retrieving, modeling, linking and integrating. We mainly adopt four kinds of geospatial data sources to evaluate the performance of the proposed approach. The experimental results illustrate that the proposed linking method can get high performance in generating the matched candidate record pairs in terms of Reduction Ratio(RR), Pairs Completeness(PC), Pairs Quality(PQ) and F-score. The integrating results denote that each data source can get much Complementary Completeness(CC) and Increased Completeness(IC).


Author(s):  
Kamil Piętak ◽  
Jacek Dajda ◽  
Michał Wysokiński ◽  
Michał Idzik ◽  
Łukasz Leśniak

2020 ◽  
Vol 9 (8) ◽  
pp. 474
Author(s):  
Linfang Ding ◽  
Guohui Xiao ◽  
Diego Calvanese ◽  
Liqiu Meng

In a variety of applications relying on geospatial data, getting insights into heterogeneous geodata sources is crucial for decision making, but often challenging. The reason is that it typically requires combining information coming from different sources via data integration techniques, and then making sense out of the combined data via sophisticated analysis methods. To address this challenge we rely on two well-established research areas: data integration and geovisual analytics, and propose to adopt an ontology-based approach to decouple the challenges of data access and analytics. Our framework consists of two modules centered around an ontology: (1) an ontology-based data integration (OBDI) module, in which mappings specify the relationship between the underlying data and a domain ontology; (2) a geovisual analytics (GeoVA) module, designed for the exploration of the integrated data, by explicitly making use of standard ontologies. In this framework, ontologies play a central role by providing a coherent view over the heterogeneous data, and by acting as a mediator for visual analysis tasks. We test our framework in a scenario for the investigation of the spatiotemporal patterns of meteorological and traffic data from several open data sources. Initial studies show that our approach is feasible for the exploration and understanding of heterogeneous geospatial data.


2020 ◽  
Vol 36 (4) ◽  
pp. 1695-1718
Author(s):  
Sabine Loos ◽  
David Lallemant ◽  
Jack Baker ◽  
Jamie McCaughey ◽  
Sang-Ho Yun ◽  
...  

While unprecedented amounts of building damage data are now produced after earthquakes, stakeholders do not have a systematic method to synthesize and evaluate damage information, thus leaving many datasets unused. We propose a Geospatial Data Integration Framework (G-DIF) that employs regression kriging to combine a sparse sample of accurate field surveys with spatially exhaustive, though uncertain, damage data from forecasts or remote sensing. The framework can be implemented after an earthquake to produce a spatially distributed estimate of damage and, importantly, its uncertainty. An example application with real data collected after the 2015 Nepal earthquake illustrates how regression kriging can combine a diversity of datasets—and downweight uninformative sources—reflecting its ability to accommodate context-specific variations in data type and quality. Through a sensitivity analysis on the number of field surveys, we demonstrate that with only a few surveys, this method can provide more accurate results than a standard engineering forecast.


Sign in / Sign up

Export Citation Format

Share Document