Hybrid evolutionary algorithms for large scale continuous problems

Author(s):  
Antonio LaTorre ◽  
José María Peña ◽  
Santiago Muelas ◽  
Manuel Zaforas
Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 146
Author(s):  
Aleksei Vakhnin ◽  
Evgenii Sopov

Modern real-valued optimization problems are complex and high-dimensional, and they are known as “large-scale global optimization (LSGO)” problems. Classic evolutionary algorithms (EAs) perform poorly on this class of problems because of the curse of dimensionality. Cooperative Coevolution (CC) is a high-performed framework for performing the decomposition of large-scale problems into smaller and easier subproblems by grouping objective variables. The efficiency of CC strongly depends on the size of groups and the grouping approach. In this study, an improved CC (iCC) approach for solving LSGO problems has been proposed and investigated. iCC changes the number of variables in subcomponents dynamically during the optimization process. The SHADE algorithm is used as a subcomponent optimizer. We have investigated the performance of iCC-SHADE and CC-SHADE on fifteen problems from the LSGO CEC’13 benchmark set provided by the IEEE Congress of Evolutionary Computation. The results of numerical experiments have shown that iCC-SHADE outperforms, on average, CC-SHADE with a fixed number of subcomponents. Also, we have compared iCC-SHADE with some state-of-the-art LSGO metaheuristics. The experimental results have shown that the proposed algorithm is competitive with other efficient metaheuristics.


Author(s):  
W.K. Mashwani ◽  
Ozgur Yeniay ◽  
H. Shah ◽  
N.M. Tairan ◽  
M. Sulaiman

Author(s):  
Thomas Weise ◽  
Raymond Chiong

The ubiquitous presence of distributed systems has drastically changed the way the world interacts, and impacted not only the economics and governance but also the society at large. It is therefore important for the architecture and infrastructure within the distributed environment to be continuously renewed in order to cope with the rapid changes driven by the innovative technologies. However, many problems in distributed computing are either of dynamic nature, large scale, NP complete, or a combination of any of these. In most cases, exact solutions are hardly found. As a result, a number of intelligent nature-inspired algorithms have been used recently, as these algorithms are capable of achieving good quality solutions in reasonable computational time. Among all the nature-inspired algorithms, evolutionary algorithms are considerably the most extensively applied ones. This chapter presents a systematic review of evolutionary algorithms employed to solve various problems related to distributed systems. The review is aimed at providing an insight of evolutionary approaches, in particular genetic algorithms and genetic programming, in solving problems in five different areas of network optimization: network topology, routing, protocol synthesis, network security, and parameter settings and configuration. Some interesting applications from these areas will be discussed in detail with the use of illustrative examples.


Sign in / Sign up

Export Citation Format

Share Document