On channel assignment, distributed antennas and network load distribution in dense IEEE 802.11 infrastructure networks

Author(s):  
Robert Sombrutzki ◽  
Anatolij Zubow ◽  
Pablo Vidales ◽  
Jens-Peter Redlich
Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 769
Author(s):  
Dong Mu ◽  
Xiongping Yue ◽  
Huanyu Ren

A cyber-physical supply network is composed of an undirected cyber supply network and a directed physical supply network. Such interdependence among firms increases efficiency but creates more vulnerabilities. The adverse effects of any failure can be amplified and propagated throughout the network. This paper aimed at investigating the robustness of the cyber-physical supply network against cascading failures. Considering that the cascading failure is triggered by overloading in the cyber supply network and is provoked by underload in the physical supply network, a realistic cascading model for cyber-physical supply networks is proposed. We conducted a numerical simulation under cyber node and physical node failure with varying parameters. The simulation results demonstrated that there are critical thresholds for both firm’s capacities, which can determine whether capacity expansion is helpful; there is also a cascade window for network load distribution, which can determine the cascading failures occurrence and scale. Our work may be beneficial for developing cascade control and defense strategies in cyber-physical supply networks.


Telecom ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 228-241
Author(s):  
Jose Manuel Gimenez-Guzman ◽  
David Crespo-Sen ◽  
Ivan Marsa-Maestre

Channel assignment has become a critical configuration task in Wi-Fi networks due to the increasing number and density of devices which use the same frequency band in the radioelectric spectrum. There have been a number of research efforts that propose how to assign channels to the access points of Wi-Fi networks. However, most of them ignore the effect of clients (also called stations or STAs) in channel assignment, instead focusing only on access points (APs). In this paper, we claim that considering STAs in the channel assignment procedure yields better solutions in comparison with those obtained when STAs are ignored. To evaluate this hypothesis we have proposed a heuristic technique that includes the effect of interferences produced by STAs. Results show that taking STAs into account clearly improves the performance of the solutions both in terms of the achieved utility and in terms of the variability of results. We believe that these results will be useful to the design of future channel assignment techniques which consider the effect of STAs.


Sign in / Sign up

Export Citation Format

Share Document