Evaluation of reinforcement learning techniques

Author(s):  
Anil Kumar Yadav ◽  
Shaillendra Kumar Shrivastava
Author(s):  
Ming-Sheng Ying ◽  
Yuan Feng ◽  
Sheng-Gang Ying

AbstractMarkov decision process (MDP) offers a general framework for modelling sequential decision making where outcomes are random. In particular, it serves as a mathematical framework for reinforcement learning. This paper introduces an extension of MDP, namely quantum MDP (qMDP), that can serve as a mathematical model of decision making about quantum systems. We develop dynamic programming algorithms for policy evaluation and finding optimal policies for qMDPs in the case of finite-horizon. The results obtained in this paper provide some useful mathematical tools for reinforcement learning techniques applied to the quantum world.


Author(s):  
Bryan P Bednarski ◽  
Akash Deep Singh ◽  
William M Jones

Abstract objective This work investigates how reinforcement learning and deep learning models can facilitate the near-optimal redistribution of medical equipment in order to bolster public health responses to future crises similar to the COVID-19 pandemic. materials and methods The system presented is simulated with disease impact statistics from the Institute of Health Metrics (IHME), Center for Disease Control, and Census Bureau[1, 2, 3]. We present a robust pipeline for data preprocessing, future demand inference, and a redistribution algorithm that can be adopted across broad scales and applications. results The reinforcement learning redistribution algorithm demonstrates performance optimality ranging from 93-95%. Performance improves consistently with the number of random states participating in exchange, demonstrating average shortage reductions of 78.74% (± 30.8) in simulations with 5 states to 93.50% (± 0.003) with 50 states. conclusion These findings bolster confidence that reinforcement learning techniques can reliably guide resource allocation for future public health emergencies.


2019 ◽  
Vol 68 (3) ◽  
pp. 375-389 ◽  
Author(s):  
Quintin Fettes ◽  
Mark Clark ◽  
Razvan Bunescu ◽  
Avinash Karanth ◽  
Ahmed Louri

Sign in / Sign up

Export Citation Format

Share Document