Adaptive Look-ahead distance for Pure Pursuit Controller with Deep Reinforcement Learning Techniques

2021 ◽  
Author(s):  
Aakarsh Goel ◽  
Shubham Chauhan
Author(s):  
Ming-Sheng Ying ◽  
Yuan Feng ◽  
Sheng-Gang Ying

AbstractMarkov decision process (MDP) offers a general framework for modelling sequential decision making where outcomes are random. In particular, it serves as a mathematical framework for reinforcement learning. This paper introduces an extension of MDP, namely quantum MDP (qMDP), that can serve as a mathematical model of decision making about quantum systems. We develop dynamic programming algorithms for policy evaluation and finding optimal policies for qMDPs in the case of finite-horizon. The results obtained in this paper provide some useful mathematical tools for reinforcement learning techniques applied to the quantum world.


Author(s):  
Bryan P Bednarski ◽  
Akash Deep Singh ◽  
William M Jones

Abstract objective This work investigates how reinforcement learning and deep learning models can facilitate the near-optimal redistribution of medical equipment in order to bolster public health responses to future crises similar to the COVID-19 pandemic. materials and methods The system presented is simulated with disease impact statistics from the Institute of Health Metrics (IHME), Center for Disease Control, and Census Bureau[1, 2, 3]. We present a robust pipeline for data preprocessing, future demand inference, and a redistribution algorithm that can be adopted across broad scales and applications. results The reinforcement learning redistribution algorithm demonstrates performance optimality ranging from 93-95%. Performance improves consistently with the number of random states participating in exchange, demonstrating average shortage reductions of 78.74% (± 30.8) in simulations with 5 states to 93.50% (± 0.003) with 50 states. conclusion These findings bolster confidence that reinforcement learning techniques can reliably guide resource allocation for future public health emergencies.


2019 ◽  
Vol 68 (3) ◽  
pp. 375-389 ◽  
Author(s):  
Quintin Fettes ◽  
Mark Clark ◽  
Razvan Bunescu ◽  
Avinash Karanth ◽  
Ahmed Louri

Author(s):  
Ali Fakhry

The applications of Deep Q-Networks are seen throughout the field of reinforcement learning, a large subsect of machine learning. Using a classic environment from OpenAI, CarRacing-v0, a 2D car racing environment, alongside a custom based modification of the environment, a DQN, Deep Q-Network, was created to solve both the classic and custom environments. The environments are tested using custom made CNN architectures and applying transfer learning from Resnet18. While DQNs were state of the art years ago, using it for CarRacing-v0 appears somewhat unappealing and not as effective as other reinforcement learning techniques. Overall, while the model did train and the agent learned various parts of the environment, attempting to reach the reward threshold for the environment with this reinforcement learning technique seems problematic and difficult as other techniques would be more useful.


Sign in / Sign up

Export Citation Format

Share Document