Skin surface reconstruction from stereo images

Author(s):  
Qian Zhang ◽  
TaegKeun Whangbo
2013 ◽  
Vol 5 (0) ◽  
pp. 60-64 ◽  
Author(s):  
Shigeki Sugimoto ◽  
Takaaki Kato ◽  
Kouma Motooka ◽  
Masatoshi Okutomi

Author(s):  
H. Hu ◽  
B. Wu

The Narrow-Angle Camera (NAC) on board the Lunar Reconnaissance Orbiter (LRO) comprises of a pair of closely attached high-resolution push-broom sensors, in order to improve the swath coverage. However, the two image sensors do not share the same lenses and cannot be modelled geometrically using a single physical model. Thus, previous works on dense matching of stereo pairs of NAC images would generally create two to four stereo models, each with an irregular and overlapping region of varying size. Semi-Global Matching (SGM) is a well-known dense matching method and has been widely used for image-based 3D surface reconstruction. SGM is a global matching algorithm relying on global inference in a larger context rather than individual pixels to establish stable correspondences. The stereo configuration of LRO NAC images causes severe problem for image matching methods such as SGM, which emphasizes global matching strategy. Aiming at using SGM for image matching of LRO NAC stereo pairs for precision 3D surface reconstruction, this paper presents a coupled epipolar rectification methods for LRO NAC stereo images, which merges the image pair in the disparity space and in this way, only one stereo model will be estimated. For a stereo pair (four) of NAC images, the method starts with the boresight calibration by finding correspondence in the small overlapping stripe between each pair of NAC images and bundle adjustment of the stereo pair, in order to clean the vertical disparities. Then, the dominate direction of the images are estimated by project the center of the coverage area to the reference image and back-projected to the bounding box plane determined by the image orientation parameters iteratively. The dominate direction will determine an affine model, by which the pair of NAC images are warped onto the object space with a given ground resolution and in the meantime, a mask is produced indicating the owner of each pixel. SGM is then used to generate a disparity map for the stereo pair and each correspondence is transformed back to the owner and 3D points are derived through photogrammetric space intersection. Experimental results reveal that the proposed method is able to reduce gaps and inconsistencies caused by the inaccurate boresight offsets between the two NAC cameras and the irregular overlapping regions, and finally generate precise and consistent 3D surface models from the NAC stereo images automatically.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4492
Author(s):  
Cho-I Moon ◽  
Onseok Lee

With the development of the mobile phone, we can acquire high-resolution images of the skin to observe its detailed features using a mobile camera. We acquire stereo images using a mobile camera to enable a three-dimensional (3D) analysis of the skin surface. However, geometric changes in the observed skin structure caused by the lens distortion of the mobile phone result in a low accuracy of the 3D information extracted through stereo matching. Therefore, our study proposes a Distortion Correction Matrix (DCM) to correct the fine distortion of close-up mobile images, pixel by pixel. We verified the correction performance by analyzing the results of correspondence point matching in the stereo image corrected using the DCM. We also confirmed the correction results of the image taken at the five different working distances and derived a linear regression model for the relationship between the angle of the image and the distortion ratio. The proposed DCM considers the distortion degree, which appears to be different in the left and right regions of the image. Finally, we performed a fine distortion correction, which is difficult to check with the naked eye. The results of this study can enable the accurate and precise 3D analysis of the skin surface using corrected mobile images.


2021 ◽  
Vol 13 (15) ◽  
pp. 2975
Author(s):  
Man Peng ◽  
Kaichang Di ◽  
Yexin Wang ◽  
Wenhui Wan ◽  
Zhaoqin Liu ◽  
...  

Topographic products are important for mission operations and scientific research in lunar exploration. In a lunar rover mission, high-resolution digital elevation models are typically generated at waypoints by photogrammetry methods based on rover stereo images acquired by stereo cameras. In case stereo images are not available, the stereo-photogrammetric method will not be applicable. Alternatively, photometric stereo method can recover topographic information with pixel-level resolution from three or more images, which are acquired by one camera under the same viewing geometry with different illumination conditions. In this research, we extend the concept of photometric stereo to photogrammetric-photometric stereo by incorporating collinearity equations into imaging irradiance model. The proposed photogrammetric-photometric stereo algorithm for surface construction involves three steps. First, the terrain normal vector in object space is derived from collinearity equations, and image irradiance equation for close-range topographic mapping is determined. Second, based on image irradiance equations of multiple images, the height gradients in image space can be solved. Finally, the height map is reconstructed through global least-squares surface reconstruction with spectral regularization. Experiments were carried out using simulated lunar rover images and actual lunar rover images acquired by Yutu-2 rover of Chang’e-4 mission. The results indicate that the proposed method achieves high-resolution and high-precision surface reconstruction, and outperforms the traditional photometric stereo methods. The proposed method is valuable for ground-based lunar surface reconstruction and can be applicable to surface reconstruction of Earth and other planets.


2022 ◽  
Author(s):  
Z. A. M. Nazmi ◽  
◽  
Rostam Affendi Hamzah ◽  
M. N. Zarina ◽  
Z. Madiha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document