User acceptance of handwritten recognition accuracy

Author(s):  
Mary LaLomia
2021 ◽  
Vol 9 (2) ◽  
pp. 73-84
Author(s):  
Md. Shahadat Hossain ◽  
Md. Anwar Hossain ◽  
AFM Zainul Abadin ◽  
Md. Manik Ahmed

The recognition of handwritten Bangla digit is providing significant progress on optical character recognition (OCR). It is a very critical task due to the similar pattern and alignment of handwriting digits. With the progress of modern research on optical character recognition, it is reducing the complexity of the classification task by several methods, a few problems encounter during recognition and wait to be solved with simpler methods. The modern emerging field of artificial intelligence is the Deep Neural Network, which promises a solid solution to these few handwritten recognition problems. This paper proposed a fine regulated deep neural network (FRDNN) for the handwritten numeric character recognition problem that uses convolutional neural network (CNN) models with regularization parameters which makes the model generalized by preventing the overfitting. This paper applied Traditional Deep Neural Network (TDNN) and Fine regulated deep neural network (FRDNN) models with a similar layer experienced on BanglaLekha-Isolated databases and the classification accuracies for the two models were 96.25% and 96.99%, respectively over 100 epochs. The network performance of the FRDNN model on the BanglaLekha-Isolated digit dataset was more robust and accurate than the TDNN model and depend on experimentation. Our proposed method is obtained a good recognition accuracy compared with other existing available methods.


Author(s):  
Teddy Surya Gunawan ◽  
Ahmad Fakhrur Razi Mohd Noor ◽  
Mira Kartiwi

Due to the advanced in GPU and CPU, in recent years, Deep Neural Network (DNN) becomes popular to be utilized both as feature extraction and classifier. This paper aims to develop offline handwritten recognition system using DNN. First, two popular English digits and letters database, i.e. MNIST and EMNIST, were selected to provide dataset for training and testing phase of DNN. Altogether, there are 10 digits [0-9] and 52 letters [a-z, A-Z]. The proposed DNN used stacked two autoencoder layers and one softmax layer. Recognition accuracy for English digits and letters is 97.7% and 88.8%, respectively. Performance comparison with other structure of neural networks revealed that the weighted average recognition rate for patternnet, feedforwardnet, and proposed DNN were 80.3%, 68.3%, and 90.4%, respectively. It shows that our proposed system is able to recognize handwritten English digits and letters with high accuracy.


Author(s):  
Aditya Surya Wijaya ◽  
Nurul Chamidah ◽  
Mayanda Mega Santoni

Handwritten characters are difficult to be recognized by machine because people had various own writing style. This research recognizes handwritten character pattern of numbers and alphabet using K-Nearest Neighbour (KNN) algorithm. Handwritten recognition process is worked by preprocessing handwritten image, segmentation to obtain separate single characters, feature extraction, and classification. Features extraction is done by utilizing Zone method that will be used for classification by splitting this features data to training data and testing data. Training data from extracted features reduced by K-Support Vector Nearest Neighbor (K-SVNN) and for recognizing handwritten pattern from testing data, we used K-Nearest Neighbor (KNN). Testing result shows that reducing training data using K-SVNN able to improve handwritten character recognition accuracy.


1986 ◽  
Vol 29 (3) ◽  
pp. 420-424 ◽  
Author(s):  
Michael Dorman ◽  
Ingrid Cedar ◽  
Maureen Hannley ◽  
Marjorie Leek ◽  
Julie Mapes Lindholm

Computer synthesized vowels of 50- and 300-ms duration were presented to normal-hearing listeners at a moderate and high sound pressure level (SPL). Presentation at the high SPL resulted in poor recognition accuracy for vowels of a duration (50 ms) shorter than the latency of the acoustic stapedial reflex. Presentation level had no effect on recognition accuracy for vowels of sufficient duration (300 ms) to elicit the reflex. The poor recognition accuracy for the brief, high intensity vowels was significantly improved when the reflex was preactivated. These results demonstrate the importance of the acoustic reflex in extending the dynamic range of the auditory system for speech recognition.


Author(s):  
Tosha B. Wetterneck ◽  
Pascale Carayon ◽  
Folasade Sobande ◽  
Ann Schoofs Hundt

Sign in / Sign up

Export Citation Format

Share Document