A battery-free object localization and motion sensing platform

Author(s):  
Yi Zhao ◽  
Anthony LaMarca ◽  
Joshua R. Smith
2018 ◽  
Vol 915 ◽  
pp. 207-212
Author(s):  
Mustafa Umut Mutlu ◽  
Osman Akin ◽  
Mustafa M. Demir ◽  
Ümit Hakan Yildiz

Conductive polymer-electrospun polymer nanofiber network was combined to host iron oxide nanoparticles providing micrometer thick sensing interface. The sensor has fabricated as free-standing fabric exhibiting 10 to 100 KOhm base resistivity upon bias applied. The moving object has been sensed through the electrostatic interactions between fibers and object. The sensing range has been found to be 1-5 cm above the surface of fabric. By the controlled combination of conductive polymers electrospun polymer nanofibers effective device miniaturization has been provided without loss of performance. The noncontact motion sensor platform has unique flexibility and light weight holding a potential for wearable sensor technology.


2017 ◽  
Vol 7 (4) ◽  
pp. 53-64 ◽  
Author(s):  
Cheng-Yu Hung ◽  
Yu-Ren Lin ◽  
Kai-Yi Huang ◽  
Pao-Ta Yu ◽  
Jerry Chih-Yuan Sun

The purpose of this study was to compare the influence of a single-player game with that of a collaborative game on students' motivation, attention levels, and relaxation levels in a motion-sensing learning environment. Participants were 20 college students in a higher education institution in southern Taiwan. A Kinect-based game with motion-sensing technology was incorporated to help the students enhance their attention levels and reduce their anxiety. Results showed that when the students worked collaboratively, they achieved higher learning motivation. In addition, brainwave data revealed that during the gaming activities, the students' attention levels in both conditions increased. It is suggested that instructors can incorporate collaborative learning environments with a Kinect motion-sensing platform to enhance students' learning motivation.


Author(s):  
Goh Eg Su ◽  
◽  
Mohd Sharizal Sunar ◽  
Rino Andias ◽  
Ajune Wanis Ismail ◽  
...  

2020 ◽  
Author(s):  
Gopi Krishna Erabati

The technology in current research scenario is marching towards automation forhigher productivity with accurate and precise product development. Vision andRobotics are domains which work to create autonomous systems and are the keytechnology in quest for mass productivity. The automation in an industry canbe achieved by detecting interactive objects and estimating the pose to manipulatethem. Therefore the object localization ( i.e., pose) includes position andorientation of object, has profound ?significance. The application of object poseestimation varies from industry automation to entertainment industry and fromhealth care to surveillance. The objective of pose estimation of objects is verysigni?cant in many cases, like in order for the robots to manipulate the objects,for accurate rendering of Augmented Reality (AR) among others.This thesis tries to solve the issue of object pose estimation using 3D dataof scene acquired from 3D sensors (e.g. Kinect, Orbec Astra Pro among others).The 3D data has an advantage of independence from object texture and invarianceto illumination. The proposal is divided into two phases : An o?ine phasewhere the 3D model template of the object ( for estimation of pose) is built usingIterative Closest Point (ICP) algorithm. And an online phase where the pose ofthe object is estimated by aligning the scene to the model using ICP, providedwith an initial alignment using 3D descriptors (like Fast Point Feature Transform(FPFH)).The approach we develop is to be integrated on two di?erent platforms :1)Humanoid robot `Pyrene' which has Orbec Astra Pro 3D sensor for data acquisition,and 2)Unmanned Aerial Vehicle (UAV) which has Intel Realsense Euclidon it. The datasets of objects (like electric drill, brick, a small cylinder, cake box)are acquired using Microsoft Kinect, Orbec Astra Pro and Intel RealSense Euclidsensors to test the performance of this technique. The objects which are used totest this approach are the ones which are used by robot. This technique is testedin two scenarios, fi?rstly, when the object is on the table and secondly when theobject is held in hand by a person. The range of objects from the sensor is 0.6to 1.6m. This technique could handle occlusions of the object by hand (when wehold the object), as ICP can work even if partial object is visible in the scene.


ROBOT ◽  
2013 ◽  
Vol 35 (4) ◽  
pp. 439 ◽  
Author(s):  
Lin WANG ◽  
Jianfu CAO ◽  
Chongzhao HAN

2018 ◽  
Vol 25 (19) ◽  
pp. 2272-2290 ◽  
Author(s):  
Aafrin M. Pettiwala ◽  
Prabhat K. Singh

Background: Amino acids are crucially involved in a myriad of biological processes. Any aberrant changes in physiological level of amino acids often manifest in common metabolic disorders, serious neurological conditions and cardiovascular diseases. Thus, devising methods for detection of trace amounts of amino acids becomes highly elemental to their efficient clinical diagnosis. Recently, the domain of developing optical sensors for detection of amino acids has witnessed significant activity which is the focus of the current review article. Methods: We undertook a detailed search of the peer-reviewed literature that primarily deals with optical sensors for amino acids and focuses on the use of different type of materials as a sensing platform. Results: Ninety-five papers have been included in the review, majority of which deal with optical sensors. We attempt to systematically classify these contributions based on the applications of various chemical and biological scaffolds such as polymers, supramolecular assemblies, nanoparticles, DNA, heparin etc for the sensing of amino acids. This review identifies that supramolecular assemblies and nanomaterial continue to be commonly used platforms to devise sensors for amino acids followed by surfactant assemblies. Conclusion: The broad implications of amino acids in human health and diagnosis have stirred a lot of interest to develop optimized optical detection systems for amino acids in recent years, using different materials based on chemical and biological scaffolds. We have also attempted to highlight the merits and demerits of some of the noteworthy sensor systems to instigate further efforts for constructing amino acids sensor based on unconventional concepts.


Sign in / Sign up

Export Citation Format

Share Document