sensing platform
Recently Published Documents





Varsha Gautam ◽  
Avshish Kumar ◽  
Ramesh Kumar ◽  
Mushahid Husain ◽  
Vinod Kumar Jain ◽  

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 514
Eliana Fernandes ◽  
Ana Ledo ◽  
Rui M. Barbosa

Direct in vivo measurements of neurometabolic markers in the brain with high spatio-temporal resolution, sensitivity, and selectivity is highly important to understand neurometabolism. Electrochemical biosensors based on microelectrodes are very attractive analytical tools for continuous monitoring of neurometabolic markers, such as lactate and glucose in the brain extracellular space at resting and following neuronal activation. Here, we assess the merits of a platinized carbon fiber microelectrode (CFM/Pt) as a sensing platform for developing enzyme oxidase-based microbiosensors to measure extracellular lactate in the brain. Lactate oxidase was immobilized on the CFM/Pt surface by crosslinking with glutaraldehyde. The CFM/Pt-based lactate microbiosensor exhibited high sensitivity and selectivity, good operational stability, and low dependence on oxygen, temperature, and pH. An array consisting of a glucose and lactate microbiosensors, including a null sensor, was used for concurrent measurement of both neurometabolic substrates in vivo in the anesthetized rat brain. Rapid changes of lactate and glucose were observed in the cortex and hippocampus in response to local glucose and lactate application and upon insulin-induced fluctuations of systemic glucose. Overall, these results indicate that microbiosensors are a valuable tool to investigate neurometabolism and to better understand the role of major neurometabolic markers, such as lactate and glucose.

2022 ◽  
Vol 13 (1) ◽  
P. Escobedo ◽  
M. D. Fernández-Ramos ◽  
N. López-Ruiz ◽  
O. Moyano-Rodríguez ◽  
A. Martínez-Olmos ◽  

AbstractThe use of facemasks by the general population is recommended worldwide to prevent the spread of SARS-CoV-2. Despite the evidence in favour of facemasks to reduce community transmission, there is also agreement on the potential adverse effects of their prolonged usage, mainly caused by CO2 rebreathing. Herein we report the development of a sensing platform for gaseous CO2 real-time determination inside FFP2 facemasks. The system consists of an opto-chemical sensor combined with a flexible, battery-less, near-field-enabled tag with resolution and limit of detection of 103 and 140 ppm respectively, and sensor lifetime of 8 h, which is comparable with recommended FFP2 facemask usage times. We include a custom smartphone application for wireless powering, data processing, alert management, results displaying and sharing. Through performance tests during daily activity and exercise monitoring, we demonstrate its utility for non-invasive, wearable health assessment and its potential applicability for preclinical research and diagnostics.

Tingting Wang ◽  
Juanyuan Hao ◽  
Jiaying Liu ◽  
Yanling Zhang ◽  
Qihua Liang ◽  

Effective monitoring of hazardous gases at room-temperature is extremely indispensable in the “Internet of things” application; however, developing bifunctional gas sensors for the advanced sensing platform still remains a challenge....

Sign in / Sign up

Export Citation Format

Share Document