2021 ◽  
Vol 20 (5s) ◽  
pp. 1-25
Author(s):  
Shounak Chakraborty ◽  
Sangeet Saha ◽  
Magnus Själander ◽  
Klaus Mcdonald-Maier

Achieving high result-accuracy in approximate computing (AC) based real-time applications without violating power constraints of the underlying hardware is a challenging problem. Execution of such AC real-time tasks can be divided into the execution of the mandatory part to obtain a result of acceptable quality, followed by a partial/complete execution of the optional part to improve accuracy of the initially obtained result within the given time-limit. However, enhancing result-accuracy at the cost of increased execution length might lead to deadline violations with higher energy usage. We propose Prepare , a novel hybrid offline-online approximate real-time task-scheduling approach, that first schedules AC-based tasks and determines operational processing speeds for each individual task constrained by system-wide power limit, deadline, and task-dependency. At runtime, by employing fine-grained DVFS, the energy-adaptive processing speed governing mechanism of Prepare reduces processing speed during each last level cache miss induced stall and scales up the processing speed once the stall finishes to a higher value than the predetermined one. To ensure on-chip thermal safety, this higher processing speed is maintained only for a short time-span after each stall, however, this reduces execution times of the individual task and generates slacks. Prepare exploits the slacks either to enhance result-accuracy of the tasks, or to improve thermal and energy efficiency of the underlying hardware, or both. With a 70 - 80% workload, Prepare offers 75% result-accuracy with its constrained scheduling, which is enhanced by 5.3% for our benchmark based evaluation of the online energy-adaptive mechanism on a 4-core based homogeneous chip multi-processor, while meeting the deadline constraint. Overall, while maintaining runtime thermal safety, Prepare reduces peak temperature by up to 8.6 °C for our baseline system. Our empirical evaluation shows that constrained scheduling of Prepare outperforms a state-of-the-art scheduling policy, whereas our runtime energy-adaptive mechanism surpasses two current DVFS based thermal management techniques.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Saehwa Kim

Preemption threshold scheduling (PTS) enhances real-time schedulability by controlling preemptiveness of tasks. This benefit of PTS highly depends on a proper algorithm that assigns each task feasible scheduling attributes, which are priority and preemption threshold. Due to the existence of an efficient optimal preemption threshold assignment algorithm that works with fully assigned priority orderings, we need an optimal priority assignment algorithm for PTS. This paper analyzes the inefficiency or nonoptimality of the previously proposed optimal priority assignment algorithms for PTS. We develop theorems for exhaustively but safely pruning infeasible priority orderings while assigning priorities to tasks for PTS. Based on the developed theorems, we correct the previously proposed optimal priority assignment algorithm for PTS. We also propose a performance improved optimal priority assignment algorithm for PTS proving its optimality. The empirical evaluation results clearly show the effectiveness of the proposed algorithm.


Author(s):  
Eugene Santos Jr. ◽  
Eunice E. Santos ◽  
Hien Nguyen ◽  
Long Pan ◽  
John Korah

With the proliferation of the Internet and rapid development of information and communication infrastructure, E-governance has become a viable option for effective deployment of government services and programs. Areas of E-governance such as Homeland security and disaster relief have to deal with vast amounts of dynamic heterogeneous data. Providing rapid real-time search capabilities for such databases/sources is a challenge. Intelligent Foraging, Gathering, and Matching (I-FGM) is an established framework developed to assist analysts to find information quickly and effectively by incrementally collecting, processing and matching information nuggets. This framework has previously been used to develop a distributed, free text information retrieval application. In this chapter, we provide a comprehensive solution for the E-GOV analyst by extending the I-FGM framework to image collections and creating a “live” version of I-FGM deployable for real-world use. We present a Content Based Image Retrieval (CBIR) technique that incrementally processes the images, extracts low-level features and map them to higher level concepts. Our empirical evaluation of the algorithm shows that our approach performs competitively compared to some existing approaches in terms of retrieving relevant images while offering the speed advantages of a distributed and incremental process, and unified framework for both text and images. We describe our production level prototype that has a sophisticated user interface which can also deal with multiple queries from multiple users. The interface provides real-time updating of the search results and provides “under the hood” details of I-FGM processes as the queries are being processed.


1999 ◽  
Author(s):  
David L. Levine ◽  
Sergio Flores-Gaitan ◽  
Douglas C. Schmidt

Author(s):  
Eugene Santos Jr. ◽  
Eunice E. Santos ◽  
Hien Nguyen ◽  
Long Pan ◽  
John Korah

Homeland security and disaster relief are some of the critical areas of E-governance that have to deal with vast amounts of dynamic heterogeneous data. Providing rapid real-time search capabilities for such applications is a challenge. Intelligent Foraging, Gathering, and Matching (I-FGM) is an established framework developed to assist users to find information quickly and effectively by incrementally collecting, processing and matching information nuggets. This framework has been successfully used to develop a distributed, unstructured text retrieval application. In this paper, we apply the I-FGM framework to image collections by using a concept-based image retrieval method. We approach this by incrementally processing images, extracting low-level features and mapping them to higher level concepts. Our empirical evaluation shows that our approach performs competitively compared to some existing approaches in terms of retrieving relevant images while offering the speed advantages of distributed and incremental process and unified framework between text and images.


Author(s):  
Stephanie R. Hargrove ◽  
Hyeonsup Lim ◽  
Lee D. Han ◽  
Phillip Bradley Freeze

Sign in / Sign up

Export Citation Format

Share Document