scholarly journals Simulating Noisy Channel Interaction

Author(s):  
Mark Braverman ◽  
Jieming Mao
2020 ◽  
Vol 2020 (4) ◽  
pp. 76-1-76-7
Author(s):  
Swaroop Shankar Prasad ◽  
Ofer Hadar ◽  
Ilia Polian

Image steganography can have legitimate uses, for example, augmenting an image with a watermark for copyright reasons, but can also be utilized for malicious purposes. We investigate the detection of malicious steganography using neural networkbased classification when images are transmitted through a noisy channel. Noise makes detection harder because the classifier must not only detect perturbations in the image but also decide whether they are due to the malicious steganographic modifications or due to natural noise. Our results show that reliable detection is possible even for state-of-the-art steganographic algorithms that insert stego bits not affecting an image’s visual quality. The detection accuracy is high (above 85%) if the payload, or the amount of the steganographic content in an image, exceeds a certain threshold. At the same time, noise critically affects the steganographic information being transmitted, both through desynchronization (destruction of information which bits of the image contain steganographic information) and by flipping these bits themselves. This will force the adversary to use a redundant encoding with a substantial number of error-correction bits for reliable transmission, making detection feasible even for small payloads.


2020 ◽  
Vol 01 ◽  
Author(s):  
Zheng Zuo ◽  
Zongyun Chen ◽  
Zhijian Cao ◽  
Wenxin Li ◽  
Yingliang Wu

: The scorpion toxins are the largest potassium channel-blocking peptide family. The understanding of toxin binding interfaces is usually restricted by two classical binding interfaces: one is the toxin α-helix motif, the other is the antiparallel β-sheet motif. In this review, such traditional knowledge was updated by another two different binding interfaces: one is BmKTX toxin using the turn motif between the α-helix and antiparallel β-sheet domains as the binding interface, the other is Ts toxin using turn motif between the β-sheet in the N-terminal and α-helix domains as the binding interface. Their interaction analysis indicated that the scarce negatively charged residues in the scorpion toxins played a critical role in orientating the toxin binding interface. In view of the toxin negatively charged amino acids as “binding interface regulator”, the law of scorpion toxin-potassium channel interaction was proposed, that is, the polymorphism of negatively charged residue distribution determines the diversity of toxin binding interfaces. Such law was used to develop scorpion toxin-potassium channel recognition control technique. According to this technique, three Kv1.3 channel-targeted peptides, using BmKTX as the template, were designed with the distinct binding interfaces from that of BmKTX through modulating the distribution of toxin negatively charged residues. In view of the potassium channel as the common targets of different animal toxins, the proposed law was also shown to helpfully orientate the binding interfaces of other animal toxins. Clearly, the toxin-potassium channel interaction law would strongly accelerate the research and development of different potassium channelblocking animal toxins in the future.


Author(s):  
Amir Hossein Estiri ◽  
Mohammad Reza Sabramooz ◽  
Ali Banaei ◽  
Amir Hossein Dehghan ◽  
Benyamin Jamialahmadi ◽  
...  

Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 17
Author(s):  
Assaf Ben-Yishai ◽  
Young-Han Kim ◽  
Rotem Oshman ◽  
Ofer Shayevitz

The interactive capacity of a noisy channel is the highest possible rate at which arbitrary interactive protocols can be simulated reliably over the channel. Determining the interactive capacity is notoriously difficult, and the best known lower bounds are far below the associated Shannon capacity, which serves as a trivial (and also generally the best known) upper bound. This paper considers the more restricted setup of simulating finite-state protocols. It is shown that all two-state protocols, as well as rich families of arbitrary finite-state protocols, can be simulated at the Shannon capacity, establishing the interactive capacity for those families of protocols.


2014 ◽  
Vol 106 (2) ◽  
pp. 749a
Author(s):  
Miao Zhang ◽  
Meng Cui ◽  
Xuan-Yu Meng ◽  
Ji-Fang Zhang ◽  
Diomedes E. Logothetis

2005 ◽  
Vol 9 (5) ◽  
pp. 417-419 ◽  
Author(s):  
Yunfei Chen ◽  
N.C. Beaulieu ◽  
C. Tellambura

Sign in / Sign up

Export Citation Format

Share Document