Channel interaction and threshold behavior of photoionization

1974 ◽  
Vol 9 (1) ◽  
pp. 171-180 ◽  
Author(s):  
C. D. Lin
2020 ◽  
Vol 01 ◽  
Author(s):  
Zheng Zuo ◽  
Zongyun Chen ◽  
Zhijian Cao ◽  
Wenxin Li ◽  
Yingliang Wu

: The scorpion toxins are the largest potassium channel-blocking peptide family. The understanding of toxin binding interfaces is usually restricted by two classical binding interfaces: one is the toxin α-helix motif, the other is the antiparallel β-sheet motif. In this review, such traditional knowledge was updated by another two different binding interfaces: one is BmKTX toxin using the turn motif between the α-helix and antiparallel β-sheet domains as the binding interface, the other is Ts toxin using turn motif between the β-sheet in the N-terminal and α-helix domains as the binding interface. Their interaction analysis indicated that the scarce negatively charged residues in the scorpion toxins played a critical role in orientating the toxin binding interface. In view of the toxin negatively charged amino acids as “binding interface regulator”, the law of scorpion toxin-potassium channel interaction was proposed, that is, the polymorphism of negatively charged residue distribution determines the diversity of toxin binding interfaces. Such law was used to develop scorpion toxin-potassium channel recognition control technique. According to this technique, three Kv1.3 channel-targeted peptides, using BmKTX as the template, were designed with the distinct binding interfaces from that of BmKTX through modulating the distribution of toxin negatively charged residues. In view of the potassium channel as the common targets of different animal toxins, the proposed law was also shown to helpfully orientate the binding interfaces of other animal toxins. Clearly, the toxin-potassium channel interaction law would strongly accelerate the research and development of different potassium channelblocking animal toxins in the future.


2007 ◽  
Vol 111 (27) ◽  
pp. 7756-7760 ◽  
Author(s):  
Won-Jae Joo ◽  
Tae-Lim Choi ◽  
Kwang-Hee Lee ◽  
Youngsu Chung

2008 ◽  
Vol 44 (1) ◽  
pp. 152-155
Author(s):  
Keiji Hayashi ◽  
Daisuke Tanaka ◽  
Harumi Araki ◽  
Tomoki Maruyama ◽  
Daisuke Matsumura ◽  
...  
Keyword(s):  

CORROSION ◽  
2009 ◽  
Vol 65 (12) ◽  
pp. 831-844 ◽  
Author(s):  
J. Hau

Abstract This paper reviews the factors that are hindering the development of models to predict corrosion due to sulfur compounds, naphthenic acids, or both, acting simultaneously on steels within the temperature range typically from 230°C to 400°C. These factors are identified as data scattering that do not distribute normally, variables or factors that do not exert their influence in a gradual manner but as a threshold behavior, and the interactions between the factors of sulfidic and naphthenic acid corrosion; exposure time, temperature, and velocity (shear stress); and the chromium and molybdenum content of the steels (Si content is not discussed). Not dealing with the interactions is probably the largest obstacle, followed by data scattering.


1985 ◽  
Vol 107 (1) ◽  
pp. 19-25 ◽  
Author(s):  
M. T. Yu ◽  
T. H. Topper

The fatigue crack growth rate behavior of a SAE1045 steel in the as received condition and four different quenched and tempered conditions was studied as a function of stress ratio and peak compressive overload. The threshold stress intensity behavior of the quenched and tempered conditions was not sensitive to changes of monotonic mechanical properties. The threshold decreased linearly with increasing positive stress ratio and compressive peak load level. As received ferritic-pearlitic SAE1045 steel was much more sensitive to stress ratio and compressive peak load than any of the quenched and tempered conditions studied.


2014 ◽  
Vol 106 (2) ◽  
pp. 749a
Author(s):  
Miao Zhang ◽  
Meng Cui ◽  
Xuan-Yu Meng ◽  
Ji-Fang Zhang ◽  
Diomedes E. Logothetis

Sign in / Sign up

Export Citation Format

Share Document