Large-Scale E-Commerce Image Retrieval with Top-Weighted Convolutional Neural Networks

Author(s):  
Shichao Zhao ◽  
Youjiang Xu ◽  
Yahong Han
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1139
Author(s):  
Khadija Kanwal ◽  
Khawaja Tehseen Ahmad ◽  
Rashid Khan ◽  
Naji Alhusaini ◽  
Li Jing

Convolutional neural networks (CNN) are relational with grid-structures and spatial dependencies for two-dimensional images to exploit location adjacencies, color values, and hidden patterns. Convolutional neural networks use sparse connections at high-level sensitivity with layered connection complying indiscriminative disciplines with local spatial mapping footprints. This fact varies with architectural dependencies, insight inputs, number and types of layers and its fusion with derived signatures. This research focuses this gap by incorporating GoogLeNet, VGG-19, and ResNet-50 architectures with maximum response based Eigenvalues textured and convolutional Laplacian scaled object features with mapped colored channels to obtain the highest image retrieval rates over millions of images from versatile semantic groups and benchmarks. Time and computation efficient formulation of the presented model is a step forward in deep learning fusion and smart signature capsulation for innovative descriptor creation. Remarkable results on challenging benchmarks are presented with a thorough contextualization to provide insight CNN effects with anchor bindings. The presented method is tested on well-known datasets including ALOT (250), Corel-1000, Cifar-10, Corel-10000, Cifar-100, Oxford Buildings, FTVL Tropical Fruits, 17-Flowers, Fashion (15), Caltech-256, and reported outstanding performance. The presented work is compared with state-of-the-art methods and experimented over tiny, large, complex, overlay, texture, color, object, shape, mimicked, plain and occupied background, multiple objected foreground images, and marked significant accuracies.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 13
Author(s):  
Raveendra K ◽  
R Vinoth Kanna

Automatic logo based document image retrieval process is an essential and mostly used method in the feature extraction applications. In this paper the architecture of Convolutional Neural Network (CNN) was elaborately explained with pictorial representations in order to understand the complex Convolutional Neural Networks process in a simplified way. The main objective of this paper is to effectively utilize the CNN in the process of automatic logo based document image retrieval methods.  


BMC Genomics ◽  
2019 ◽  
Vol 20 (S9) ◽  
Author(s):  
Yang-Ming Lin ◽  
Ching-Tai Chen ◽  
Jia-Ming Chang

Abstract Background Tandem mass spectrometry allows biologists to identify and quantify protein samples in the form of digested peptide sequences. When performing peptide identification, spectral library search is more sensitive than traditional database search but is limited to peptides that have been previously identified. An accurate tandem mass spectrum prediction tool is thus crucial in expanding the peptide space and increasing the coverage of spectral library search. Results We propose MS2CNN, a non-linear regression model based on deep convolutional neural networks, a deep learning algorithm. The features for our model are amino acid composition, predicted secondary structure, and physical-chemical features such as isoelectric point, aromaticity, helicity, hydrophobicity, and basicity. MS2CNN was trained with five-fold cross validation on a three-way data split on the large-scale human HCD MS2 dataset of Orbitrap LC-MS/MS downloaded from the National Institute of Standards and Technology. It was then evaluated on a publicly available independent test dataset of human HeLa cell lysate from LC-MS experiments. On average, our model shows better cosine similarity and Pearson correlation coefficient (0.690 and 0.632) than MS2PIP (0.647 and 0.601) and is comparable with pDeep (0.692 and 0.642). Notably, for the more complex MS2 spectra of 3+ peptides, MS2PIP is significantly better than both MS2PIP and pDeep. Conclusions We showed that MS2CNN outperforms MS2PIP for 2+ and 3+ peptides and pDeep for 3+ peptides. This implies that MS2CNN, the proposed convolutional neural network model, generates highly accurate MS2 spectra for LC-MS/MS experiments using Orbitrap machines, which can be of great help in protein and peptide identifications. The results suggest that incorporating more data for deep learning model may improve performance.


Sign in / Sign up

Export Citation Format

Share Document