large scale image retrieval
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 43)

H-INDEX

20
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
pp. 508
Author(s):  
Wenjin Hu ◽  
Yukun Chen ◽  
Lifang Wu ◽  
Ge Shi ◽  
Meng Jian

Hamming space retrieval is a hot area of research in deep hashing because it is effective for large-scale image retrieval. Existing hashing algorithms have not fully used the absolute boundary to discriminate the data inside and outside the Hamming ball, and the performance is not satisfying. In this paper, a boundary-aware contrastive loss is designed. It involves an exponential function with absolute boundary (i.e., Hamming radius) information for dissimilar pairs and a logarithmic function to encourage small distance for similar pairs. It achieves a push that is bigger than the pull inside the Hamming ball, and the pull is bigger than the push outside the ball. Furthermore, a novel Boundary-Aware Hashing (BAH) architecture is proposed. It discriminatively penalizes the dissimilar data inside and outside the Hamming ball. BAH enables the influence of extremely imbalanced data to be reduced without up-weight to similar pairs or other optimization strategies because its exponential function rapidly converges outside the absolute boundary, making a huge contrast difference between the gradients of the logarithmic and exponential functions. Extensive experiments conducted on four benchmark datasets show that the proposed BAH obtains higher performance for different code lengths, and it has the advantage of handling extremely imbalanced data.


Author(s):  
Shu Zhao ◽  
Dayan Wu ◽  
Yucan Zhou ◽  
Bo Li ◽  
Weiping Wang

Deep hashing methods have shown great retrieval accuracy and efficiency in large-scale image retrieval. How to optimize discrete hash bits is always the focus in deep hashing methods. A common strategy in these methods is to adopt an activation function, e.g. sigmoid() or tanh(), and minimize a quantization loss to approximate discrete values. However, this paradigm may make more and more hash bits stuck into the wrong saturated area of the activation functions and never escaped. We call this problem "Dead Bits Problem (DBP)". Besides, the existing quantization loss will aggravate DBP as well. In this paper, we propose a simple but effective gradient amplifier which acts before activation functions to alleviate DBP. Moreover, we devise an error-aware quantization loss to further alleviate DBP. It avoids the negative effect of quantization loss based on the similarity between two images. The proposed gradient amplifier and error-aware quantization loss are compatible with a variety of deep hashing methods. Experimental results on three datasets demonstrate the efficiency of the proposed gradient amplifier and the error-aware quantization loss.


2021 ◽  
Author(s):  
Ming Zhang ◽  
Xuefei Zhe ◽  
Le Ou-Yang ◽  
Shifeng Chen ◽  
Hong Yan

2021 ◽  
Vol 15 (3) ◽  
pp. 1-22
Author(s):  
Zheng Zhang ◽  
Xiaofeng Zhu ◽  
Guangming Lu ◽  
Yudong Zhang

Semantic hashing enables computation and memory-efficient image retrieval through learning similarity-preserving binary representations. Most existing hashing methods mainly focus on preserving the piecewise class information or pairwise correlations of samples into the learned binary codes while failing to capture the mutual triplet-level ordinal structure in similarity preservation. In this article, we propose a novel Probability Ordinal-preserving Semantic Hashing (POSH) framework, which for the first time defines the ordinal-preserving hashing concept under a non-parametric Bayesian theory. Specifically, we derive the whole learning framework of the ordinal similarity-preserving hashing based on the maximum posteriori estimation, where the probabilistic ordinal similarity preservation, probabilistic quantization function, and probabilistic semantic-preserving function are jointly considered into one unified learning framework. In particular, the proposed triplet-ordering correlation preservation scheme can effectively improve the interpretation of the learned hash codes under an economical anchor-induced asymmetric graph learning model. Moreover, the sparsity-guided selective quantization function is designed to minimize the loss of space transformation, and the regressive semantic function is explored to promote the flexibility of the formulated semantics in hash code learning. The final joint learning objective is formulated to concurrently preserve the ordinal locality of original data and explore potentials of semantics for producing discriminative hash codes. Importantly, an efficient alternating optimization algorithm with the strictly proof convergence guarantee is developed to solve the resulting objective problem. Extensive experiments on several large-scale datasets validate the superiority of the proposed method against state-of-the-art hashing-based retrieval methods.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1139
Author(s):  
Khadija Kanwal ◽  
Khawaja Tehseen Ahmad ◽  
Rashid Khan ◽  
Naji Alhusaini ◽  
Li Jing

Convolutional neural networks (CNN) are relational with grid-structures and spatial dependencies for two-dimensional images to exploit location adjacencies, color values, and hidden patterns. Convolutional neural networks use sparse connections at high-level sensitivity with layered connection complying indiscriminative disciplines with local spatial mapping footprints. This fact varies with architectural dependencies, insight inputs, number and types of layers and its fusion with derived signatures. This research focuses this gap by incorporating GoogLeNet, VGG-19, and ResNet-50 architectures with maximum response based Eigenvalues textured and convolutional Laplacian scaled object features with mapped colored channels to obtain the highest image retrieval rates over millions of images from versatile semantic groups and benchmarks. Time and computation efficient formulation of the presented model is a step forward in deep learning fusion and smart signature capsulation for innovative descriptor creation. Remarkable results on challenging benchmarks are presented with a thorough contextualization to provide insight CNN effects with anchor bindings. The presented method is tested on well-known datasets including ALOT (250), Corel-1000, Cifar-10, Corel-10000, Cifar-100, Oxford Buildings, FTVL Tropical Fruits, 17-Flowers, Fashion (15), Caltech-256, and reported outstanding performance. The presented work is compared with state-of-the-art methods and experimented over tiny, large, complex, overlay, texture, color, object, shape, mimicked, plain and occupied background, multiple objected foreground images, and marked significant accuracies.


Author(s):  
Yongfei Zhang ◽  
Cheng Peng ◽  
Jingtao Zhang ◽  
Xianglong Liu ◽  
Shiliang Pu ◽  
...  

Author(s):  
Joel Brogan ◽  
Aparna Bharati ◽  
Daniel Moreira ◽  
Anderson Rocha ◽  
Kevin Bowyer ◽  
...  

2020 ◽  
Author(s):  
Saliha Mezzoudj

Recently, the increasing use of mobile devices, such as cameras and smartphones, has resulted in a dramatic increase in the amount of images collected every day. Therefore, retrieving and managing these large volumes of images has become a major challenge in the field of computer vision. One of the solutions for efficiently managing image databases is an Image Content Search (CBIR) system. For this, we introduce in this chapter some fundamental theories of content-based image retrieval for large scale databases using Parallel frameworks. Section 2 and Section 3 presents the basic methods of content-based image retrieval. Then, as the emphasis of this chapter, we introduce in Section 1.2 A content-based image retrieval system for large-scale images databases. After that, we briefly address Big Data, Big Data processing platforms for large scale image retrieval. In Sections 5, 6, 7, and 8. Finally, we draw a conclusion in Section 9.


Sign in / Sign up

Export Citation Format

Share Document