Generative Model Based Fine-Grained Air Pollution Inference for Mobile Sensing Systems

Author(s):  
Rui Ma ◽  
Xiangxiang Xu ◽  
Hae Young Noh ◽  
Pei Zhang ◽  
Lin Zhang
Author(s):  
Rui Ma ◽  
Ning Liu ◽  
Xiangxiang Xu ◽  
Yue Wang ◽  
Hae Young Noh ◽  
...  

Author(s):  
Zijie Guo ◽  
Rong Zhi ◽  
Wuqaing Zhang ◽  
Baofeng Wang ◽  
Zhijie Fang ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Zhang ◽  
Xiaolong Zheng ◽  
Zhanyong Tang ◽  
Tianzhang Xing ◽  
Xiaojiang Chen ◽  
...  

Mobile sensing has become a new style of applications and most of the smart devices are equipped with varieties of sensors or functionalities to enhance sensing capabilities. Current sensing systems concentrate on how to enhance sensing capabilities; however, the sensors or functionalities may lead to the leakage of users’ privacy. In this paper, we present WiPass, a way to leverage the wireless hotspot functionality on the smart devices to snoop the unlock passwords/patterns without the support of additional hardware. The attacker can “see” your unlock passwords/patterns even one meter away. WiPass leverages the impacts of finger motions on the wireless signals during the unlocking period to analyze the passwords/patterns. To practically implement WiPass, we are facing the difficult feature extraction and complex unlock passwords matching, making the analysis of the finger motions challenging. To conquer the challenges, we use DCASW to extract feature and hierarchical DTW to do unlock passwords matching. Besides, the combination of amplitude and phase information is used to accurately recognize the passwords/patterns. We implement a prototype of WiPass and evaluate its performance under various environments. The experimental results show that WiPass achieves the detection accuracy of 85.6% and 74.7% for passwords/patterns detection in LOS and in NLOS scenarios, respectively.


2021 ◽  
Author(s):  
Joanne Zhou ◽  
Bishal Lamichhane ◽  
Dror Ben-Zeev ◽  
Andrew Campbell ◽  
Akane Sano

BACKGROUND Behavioral representations obtained from mobile sensing data could be helpful for the prediction of an oncoming psychotic relapse in schizophrenia patients and delivery of timely interventions to mitigate such relapse. OBJECTIVE In this work, we aim to develop clustering models to obtain behavioral representations from continuous multimodal mobile sensing data towards relapse prediction tasks. The identified clusters could represent different routine behavioral trends related to daily living of patients as well as atypical behavioral trends associated with impending relapse. METHODS We used the mobile sensing data obtained in the CrossCheck project for our analysis. Continuous data from six different mobile sensing-based modalities (e.g. ambient light, sound/conversation, acceleration etc.) obtained from a total of 63 schizophrenia patients, each monitored for up to a year, were used for the clustering models and relapse prediction evaluation. Two clustering models, Gaussian Mixture Model (GMM) and Partition Around Medoids (PAM), were used to obtain behavioral representations from the mobile sensing data. These models have different notions of similarity between behaviors as represented by the mobile sensing data and thus provide differing behavioral characterizations. The features obtained from the clustering models were used to train and evaluate a personalized relapse prediction model using Balanced Random Forest. The personalization was done by identifying optimal features for a given patient based on a personalization subset consisting of other patients who are of similar age. RESULTS The clusters identified using the GMM and PAM models were found to represent different behavioral patterns (such as clusters representing sedentary days, active but with low communications days, etc.). While GMM based models better characterized routine behaviors by discovering dense clusters with low cluster spread, some other identified clusters had a larger cluster spread likely indicating heterogeneous behavioral characterizations. PAM model based clusters on the other hand had lower variability of cluster spread, indicating more homogeneous behavioral characterization in the obtained clusters. Significant changes near the relapse periods were seen in the obtained behavioral representation features from the clustering models. The clustering model based features, together with other features characterizing the mobile sensing data, resulted in an F2 score of 0.24 for the relapse prediction task in a leave-one-patient-out evaluation setting. This obtained F2 score is significantly higher than a random classification baseline with an average F2 score of 0.042. CONCLUSIONS Mobile sensing can capture behavioral trends using different sensing modalities. Clustering of the daily mobile sensing data may help discover routine as well as atypical behavioral trends. In this work, we used GMM and PAM-based cluster models to obtain behavioral trends in schizophrenia patients. The features derived from the cluster models were found to be predictive for detecting an oncoming psychotic relapse. Such relapse prediction models can be helpful to enable timely interventions.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yongyi Li ◽  
Shiqi Wang ◽  
Shuang Dong ◽  
Xueling Lv ◽  
Changzhi Lv ◽  
...  

At present, person reidentification based on attention mechanism has attracted many scholars’ interests. Although attention module can improve the representation ability and reidentification accuracy of Re-ID model to a certain extent, it depends on the coupling of attention module and original network. In this paper, a person reidentification model that combines multiple attentions and multiscale residuals is proposed. The model introduces combined attention fusion module and multiscale residual fusion module in the backbone network ResNet 50 to enhance the feature flow between residual blocks and better fuse multiscale features. Furthermore, a global branch and a local branch are designed and applied to enhance the channel aggregation and position perception ability of the network by utilizing the dual ensemble attention module, as along as the fine-grained feature expression is obtained by using multiproportion block and reorganization. Thus, the global and local features are enhanced. The experimental results on Market-1501 dataset and DukeMTMC-reID dataset show that the indexes of the presented model, especially Rank-1 accuracy, reach 96.20% and 89.59%, respectively, which can be considered as a progress in Re-ID.


Sign in / Sign up

Export Citation Format

Share Document