3D Human Pose Estimation from RGB-D Images Using Deep Learning Method

Author(s):  
Junchul Chun ◽  
Seohee Park ◽  
Myunggeun Ji
Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2267
Author(s):  
Dejun Zhang ◽  
Yiqi Wu ◽  
Mingyue Guo ◽  
Yilin Chen

The rise of deep learning technology has broadly promoted the practical application of artificial intelligence in production and daily life. In computer vision, many human-centered applications, such as video surveillance, human-computer interaction, digital entertainment, etc., rely heavily on accurate and efficient human pose estimation techniques. Inspired by the remarkable achievements in learning-based 2D human pose estimation, numerous research studies are devoted to the topic of 3D human pose estimation via deep learning methods. Against this backdrop, this paper provides an extensive literature survey of recent literature about deep learning methods for 3D human pose estimation to display the development process of these research studies, track the latest research trends, and analyze the characteristics of devised types of methods. The literature is reviewed, along with the general pipeline of 3D human pose estimation, which consists of human body modeling, learning-based pose estimation, and regularization for refinement. Different from existing reviews of the same topic, this paper focus on deep learning-based methods. The learning-based pose estimation is discussed from two categories: single-person and multi-person. Each one is further categorized by data type to the image-based methods and the video-based methods. Moreover, due to the significance of data for learning-based methods, this paper surveys the 3D human pose estimation methods according to the taxonomy of supervision form. At last, this paper also enlists the current and widely used datasets and compares performances of reviewed methods. Based on this literature survey, it can be concluded that each branch of 3D human pose estimation starts with fully-supervised methods, and there is still much room for multi-person pose estimation based on other supervision methods from both image and video. Besides the significant development of 3D human pose estimation via deep learning, the inherent ambiguity and occlusion problems remain challenging issues that need to be better addressed.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1116 ◽  
Author(s):  
Jun Sun ◽  
Mantao Wang ◽  
Xin Zhao ◽  
Dejun Zhang

In this paper, we study the problem of monocular 3D human pose estimation based on deep learning. Due to single view limitations, the monocular human pose estimation cannot avoid the inherent occlusion problem. The common methods use the multi-view based 3D pose estimation method to solve this problem. However, single-view images cannot be used directly in multi-view methods, which greatly limits practical applications. To address the above-mentioned issues, we propose a novel end-to-end 3D pose estimation network for monocular 3D human pose estimation. First, we propose a multi-view pose generator to predict multi-view 2D poses from the 2D poses in a single view. Secondly, we propose a simple but effective data augmentation method for generating multi-view 2D pose annotations, on account of the existing datasets (e.g., Human3.6M, etc.) not containing a large number of 2D pose annotations in different views. Thirdly, we employ graph convolutional network to infer a 3D pose from multi-view 2D poses. From experiments conducted on public datasets, the results have verified the effectiveness of our method. Furthermore, the ablation studies show that our method improved the performance of existing 3D pose estimation networks.


Author(s):  
Jinbao Wang ◽  
Shujie Tan ◽  
Xiantong Zhen ◽  
Shuo Xu ◽  
Feng Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document