scholarly journals Modelling and Verifying Dynamic Properties of Biological Neural Networks in Coq

Author(s):  
Abdorrahim Bahrami ◽  
Elisabetta De Maria ◽  
Amy Felty
Nanophotonics ◽  
2020 ◽  
Vol 9 (13) ◽  
pp. 4149-4162 ◽  
Author(s):  
Bruno Romeira ◽  
José M. L. Figueiredo ◽  
Julien Javaloyes

AbstractEvent-activated biological-inspired subwavelength (sub-λ) photonic neural networks are of key importance for future energy-efficient and high-bandwidth artificial intelligence systems. However, a miniaturized light-emitting nanosource for spike-based operation of interest for neuromorphic optical computing is still lacking. In this work, we propose and theoretically analyze a novel nanoscale nanophotonic neuron circuit. It is formed by a quantum resonant tunneling (QRT) nanostructure monolithic integrated into a sub-λ metal-cavity nanolight-emitting diode (nanoLED). The resulting optical nanosource displays a negative differential conductance which controls the all-or-nothing optical spiking response of the nanoLED. Here we demonstrate efficient activation of the spiking response via high-speed nonlinear electrical modulation of the nanoLED. A model that combines the dynamical equations of the circuit which considers the nonlinear voltage-controlled current characteristic, and rate equations that takes into account the Purcell enhancement of the spontaneous emission, is used to provide a theoretical framework to investigate the optical spiking dynamic properties of the neuromorphic nanoLED. We show inhibitory- and excitatory-like optical spikes at multi-gigahertz speeds can be achieved upon receiving exceptionally low (sub-10 mV) synaptic-like electrical activation signals, lower than biological voltages of 100 mV, and with remarkably low energy consumption, in the range of 10–100 fJ per emitted spike. Importantly, the energy per spike is roughly constant and almost independent of the incoming modulating frequency signal, which is markedly different from conventional current modulation schemes. This method of spike generation in neuromorphic nanoLED devices paves the way for sub-λ incoherent neural elements for fast and efficient asynchronous neural computation in photonic spiking neural networks.


2012 ◽  
pp. 533-564 ◽  
Author(s):  
Joaquin J. Torres ◽  
Pablo Varona

2021 ◽  
Author(s):  
Daniel Zimmermann ◽  
Bjorn Jurgens ◽  
Patrick Deubel ◽  
Anne Koziolek

Author(s):  
Krystyna Kuzniar ◽  
Zenon Waszczyszyn

The chapter deals with an application of neural networks to the analysis of vibrations of medium-height prefabricated buildings with load-bearing walls subjected to paraseismic excitations. Neural network technique was used for identification of dynamic properties of actual buildings, simulation of building responses to paraseismic excitations as well as for the analysis of response spectra. Mining tremors in strip mines and in the most seismically active mining regions in Poland with underground exploitation were the sources of these vibrations. On the basis of the experimental data obtained from the measurements of kinematic excitations and dynamic building responses of actual structures the training and testing patterns were formulated. It was stated that the application of neural networks enables us to predict the results with accuracy quite satisfactory for engineering practice. The results presented in this chapter lead to a conclusion that the neural technique gives new prospects of efficient analysis of structural dynamics problems related to paraseismic excitations.


Sign in / Sign up

Export Citation Format

Share Document