scholarly journals In-Memory Data Parallel Processor

2018 ◽  
Vol 53 (2) ◽  
pp. 1-14 ◽  
Author(s):  
Daichi Fujiki ◽  
Scott Mahlke ◽  
Reetuparna Das
Author(s):  
P. J. NARAYANAN ◽  
LARRY S. DAVIS

Data parallel processing on processor array architectures has gained popularity in data intensive applications, such as image processing and scientific computing, as massively parallel processor array machines became feasible commercially. The data parallel paradigm of assigning one processing element to each data element results in an inefficient utilization of a large processor array when a relatively small data structure is processed on it. The large degree of parallelism of a massively parallel processor array machine does not result in a faster solution to a problem involving relatively small data structures than the modest degree of parallelism of a machine that is just as large as the data structure. We presented data replication technique to speed up the processing of small data structures on large processor arrays. In this paper, we present replicated data algorithms for digital image convolutions and median filtering, and compare their performance with conventional data parallel algorithms for the same on three popular array interconnection networks, namely, the 2-D mesh, the 3-D mesh, and the hypercube.


AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 1603-1609 ◽  
Author(s):  
Michael J. Wright ◽  
Graham V. Candler ◽  
Deepak Bose

2008 ◽  
Vol 3 (2) ◽  
pp. 58-65
Author(s):  
C S Reddy ◽  
Prasad K.R ◽  
Mamatha E ◽  
Sathish A

Author(s):  
Krzysztof Jurczuk ◽  
Marcin Czajkowski ◽  
Marek Kretowski

AbstractThis paper concerns the evolutionary induction of decision trees (DT) for large-scale data. Such a global approach is one of the alternatives to the top-down inducers. It searches for the tree structure and tests simultaneously and thus gives improvements in the prediction and size of resulting classifiers in many situations. However, it is the population-based and iterative approach that can be too computationally demanding to apply for big data mining directly. The paper demonstrates that this barrier can be overcome by smart distributed/parallel processing. Moreover, we ask the question whether the global approach can truly compete with the greedy systems for large-scale data. For this purpose, we propose a novel multi-GPU approach. It incorporates the knowledge of global DT induction and evolutionary algorithm parallelization together with efficient utilization of memory and computing GPU’s resources. The searches for the tree structure and tests are performed simultaneously on a CPU, while the fitness calculations are delegated to GPUs. Data-parallel decomposition strategy and CUDA framework are applied. Experimental validation is performed on both artificial and real-life datasets. In both cases, the obtained acceleration is very satisfactory. The solution is able to process even billions of instances in a few hours on a single workstation equipped with 4 GPUs. The impact of data characteristics (size and dimension) on convergence and speedup of the evolutionary search is also shown. When the number of GPUs grows, nearly linear scalability is observed what suggests that data size boundaries for evolutionary DT mining are fading.


Author(s):  
Petar Hristov ◽  
Gunther H. Weber ◽  
Hamish A. Carr ◽  
Oliver Rubel ◽  
James P. Ahrens

Sign in / Sign up

Export Citation Format

Share Document