Feature based random forest nurse care activity recognition using accelerometer data

Author(s):  
Carolin Lübbe ◽  
Björn Friedrich ◽  
Sebastian Fudickar ◽  
Sandra Hellmers ◽  
Andreas Hein
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1214
Author(s):  
Eduardo Gomes ◽  
Luciano Bertini ◽  
Wagner Rangel Campos ◽  
Ana Paula Sobral ◽  
Izabela Mocaiber ◽  
...  

In pervasive healthcare monitoring, activity recognition is critical information for adequate management of the patient. Despite the great number of studies on this topic, a contextually relevant parameter that has received less attention is intensity recognition. In the present study, we investigated the potential advantage of coupling activity and intensity, namely, Activity-Intensity, in accelerometer data to improve the description of daily activities of individuals. We further tested two alternatives for supervised classification. In the first alternative, the activity and intensity are inferred together by applying a single classifier algorithm. In the other alternative, the activity and intensity are classified separately. In both cases, the algorithms used for classification are k-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Random Forest (RF). The results showed the viability of the classification with good accuracy for Activity-Intensity recognition. The best approach was KNN implemented in the single classifier alternative, which resulted in 79% of accuracy. Using two classifiers, the result was 97% accuracy for activity recognition (Random Forest), and 80% for intensity recognition (KNN), which resulted in 78% for activity-intensity coupled. These findings have potential applications to improve the contextualized evaluation of movement by health professionals in the form of a decision system with expert rules.


2021 ◽  
Author(s):  
M. Ashikuzzaman Kowshik ◽  
Yeasin Arafat Pritom ◽  
Md.Sohanur Rahman ◽  
Ali Akbar ◽  
Md Atiqur Rahman Ahad

2018 ◽  
Author(s):  
Anis Davoudi ◽  
Amal Asiri Wanigatunga ◽  
Matin Kheirkhahan ◽  
Duane Benjamin Corbett ◽  
Tonatiuh Mendoza ◽  
...  

BACKGROUND Wearable accelerometers have greatly improved measurement of physical activity, and the increasing popularity of smartwatches with inherent acceleration data collection suggest their potential use in the physical activity research domain; however, their use needs to be validated. OBJECTIVE This study aimed to assess the validity of accelerometer data collected from a Samsung Gear S smartwatch (SGS) compared with an ActiGraph GT3X+ (GT3X+) activity monitor. The study aims were to (1) assess SGS validity using a mechanical shaker; (2) assess SGS validity using a treadmill running test; and (3) compare individual activity recognition, location of major body movement detection, activity intensity detection, locomotion recognition, and metabolic equivalent scores (METs) estimation between the SGS and GT3X+. METHODS To validate and compare the SGS accelerometer data with GT3X+ data, we collected data simultaneously from both devices during highly controlled, mechanically simulated, and less-controlled natural wear conditions. First, SGS and GT3X+ data were simultaneously collected from a mechanical shaker and an individual ambulating on a treadmill. Pearson correlation was calculated for mechanical shaker and treadmill experiments. Finally, SGS and GT3X+ data were simultaneously collected during 15 common daily activities performed by 40 participants (n=12 males, mean age 55.15 [SD 17.8] years). A total of 15 frequency- and time-domain features were extracted from SGS and GT3X+ data. We used these features for training machine learning models on 6 tasks: (1) individual activity recognition, (2) activity intensity detection, (3) locomotion recognition, (4) sedentary activity detection, (5) major body movement location detection, and (6) METs estimation. The classification models included random forest, support vector machines, neural networks, and decision trees. The results were compared between devices. We evaluated the effect of different feature extraction window lengths on model accuracy as defined by the percentage of correct classifications. In addition to these classification tasks, we also used the extracted features for METs estimation. RESULTS The results were compared between devices. Accelerometer data from SGS were highly correlated with the accelerometer data from GT3X+ for all 3 axes, with a correlation ≥.89 for both the shaker test and treadmill test and ≥.70 for all daily activities, except for computer work. Our results for the classification of activity intensity levels, locomotion, sedentary, major body movement location, and individual activity recognition showed overall accuracies of 0.87, 1.00, 0.98, 0.85, and 0.64, respectively. The results were not significantly different between the SGS and GT3X+. Random forest model was the best model for METs estimation (root mean squared error of .71 and r-squared value of .50). CONCLUSIONS Our results suggest that a commercial brand smartwatch can be used in lieu of validated research grade activity monitors for individual activity recognition, major body movement location detection, activity intensity detection, and locomotion detection tasks.


Sign in / Sign up

Export Citation Format

Share Document