Development of Smart Vegetable Growing Cabinet with IoT, Edge Computing and Cloud Computing

Author(s):  
Khanista Namee ◽  
Chumpol Kamjumpol ◽  
Witoon Pimsiri
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Kai Peng ◽  
Victor C. M. Leung ◽  
Xiaolong Xu ◽  
Lixin Zheng ◽  
Jiabin Wang ◽  
...  

Mobile cloud computing (MCC) integrates cloud computing (CC) into mobile networks, prolonging the battery life of the mobile users (MUs). However, this mode may cause significant execution delay. To address the delay issue, a new mode known as mobile edge computing (MEC) has been proposed. MEC provides computing and storage service for the edge of network, which enables MUs to execute applications efficiently and meet the delay requirements. In this paper, we present a comprehensive survey of the MEC research from the perspective of service adoption and provision. We first describe the overview of MEC, including the definition, architecture, and service of MEC. After that we review the existing MUs-oriented service adoption of MEC, i.e., offloading. More specifically, the study on offloading is divided into two key taxonomies: computation offloading and data offloading. In addition, each of them is further divided into single MU offloading scheme and multi-MU offloading scheme. Then we survey edge server- (ES-) oriented service provision, including technical indicators, ES placement, and resource allocation. In addition, other issues like applications on MEC and open issues are investigated. Finally, we conclude the paper.


Author(s):  
Xalphonse Inbaraj

With the explosion of information, devices, and interactions, cloud design on its own cannot handle the flow of data. While the cloud provides us access to compute, storage, and even connectivity that we can access easily and cost-effectively, these centralized resources can create delays and performance issues for devices and information that are far from a centralized public cloud or information center source. Internet of things-connected devices are a transparent use for edge computing architecture. In this chapter, the author discusses the main differences between edge, fog, and cloud computing; pros and cons; and various applications, namely, smart cars and traffic control in transportation scenario, visual and surveillance security, connected vehicle, and smart ID card.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3071 ◽  
Author(s):  
Jun-Hong Park ◽  
Hyeong-Su Kim ◽  
Won-Tae Kim

Edge computing is proposed to solve the problem of centralized cloud computing caused by a large number of IoT (Internet of Things) devices. The IoT protocols need to be modified according to the edge computing paradigm, where the edge computing devices for analyzing IoT data are distributed to the edge networks. The MQTT (Message Queuing Telemetry Transport) protocol, as a data distribution protocol widely adopted in many international IoT standards, is suitable for cloud computing because it uses a centralized broker to effectively collect and transmit data. However, the standard MQTT may suffer from serious traffic congestion problem on the broker, causing long transfer delays if there are massive IoT devices connected to the broker. In addition, the big data exchange between the IoT devices and the broker decreases network capability of the edge networks. The authors in this paper propose a novel MQTT with a multicast mechanism to minimize data transfer delay and network usage for the massive IoT communications. The proposed MQTT reduces data transfer delays by establishing bidirectional SDN (Software Defined Networking) multicast trees between the publishers and the subscribers by means of bypassing the centralized broker. As a result, it can reduce transmission delay by 65% and network usage by 58% compared with the standard MQTT.


2019 ◽  
Vol 9 (11) ◽  
pp. 2308 ◽  
Author(s):  
Juyong Lee ◽  
Daeyoub Kim ◽  
Jihoon Lee

Recently, new mobile applications and services have appeared thanks to the rapid development of mobile devices and mobile network technology. Cloud computing has played an important role over the past decades, providing powerful computing capabilities and high-capacity storage space to efficiently deliver these mobile services to mobile users. Nevertheless, existing cloud computing delegates computing to a cloud server located at a relatively long distance, resulting in significant delays due to additional time to return processing results from a cloud server. These unnecessary delays are inconvenient for mobile users because they are not suitable for applications that require a real-time service environment. To cope with these problems, a new computing concept called Multi-Access Edge Computing (MEC) has emerged. Instead of sending all requests to the central cloud to handle mobile users’ requests, the MEC brings computing power and storage resources to the edge of the mobile network. It enables the mobile user device to run the real-time applications that are sensitive to latency to meet the strict requirements. However, there is a lack of research on the efficient utilization of computing resources and mobility support when mobile users move in the MEC environment. In this paper, we propose the MEC-based mobility management scheme that arranges MEC server (MECS) as the concept of Zone so that mobile users can continue to receive content and use server resources efficiently even when they move. The results show that the proposed scheme reduce the average service delay compared to the existing MEC scheme. In addition, the proposed scheme outperforms the existing MEC scheme because mobile users can continuously receive services, even when they move frequently.


Sign in / Sign up

Export Citation Format

Share Document