Design of Smart Home System Based on Collaborative Edge Computing and Cloud Computing

Author(s):  
Qiangfei Ma ◽  
Hua Huang ◽  
Wentao Zhang ◽  
Meikang Qiu
Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1460
Author(s):  
Rongxu Xu ◽  
Wenquan Jin ◽  
Yonggeun Hong ◽  
Do-Hyeun Kim

In recent years the ever-expanding internet of things (IoT) is becoming more empowered to revolutionize our world with the advent of cutting-edge features and intelligence in an IoT ecosystem. Thanks to the development of the IoT, researchers have devoted themselves to technologies that convert a conventional home into an intelligent occupants-aware place to manage electric resources with autonomous devices to deal with excess energy consumption and providing a comfortable living environment. There are studies to supplement the innate shortcomings of the IoT and improve intelligence by using cloud computing and machine learning. However, the machine learning-based autonomous control devices lack flexibility, and cloud computing is challenging with latency and security. In this paper, we propose a rule-based optimization mechanism on an embedded edge platform to provide dynamic home appliance control and advanced intelligence in a smart home. To provide actional control ability, we design and developed a rule-based objective function in the EdgeX edge computing platform to control the temperature states of the smart home. Compared to cloud computing, edge computing can provide faster response and higher quality of services. The edge computing paradigm provides better analysis, processing, and storage abilities to the data generated from the IoT sensors to enhance the capability of IoT devices concerning computing, storage, and network resources. In order to satisfy the paradigm of distributed edge computing, all the services are implemented as microservices. The microservices are connected to each other through REST APIs based on the constrained IoT devices to provide all the functionalities that accomplish a trade-off between energy consumption and occupant-desired environment setting for the smart home appliances. We simulated our proposed system to control the temperature of a smart home; through experimental findings, we investigated the application against the delay time and overall memory consumption by the embedded edge system of EdgeX. The result of this research work suggests that the implemented services operated efficiently in the raspberry pi 3 hardware of IoT devices.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 122
Author(s):  
BETHALA SHIRISHA ◽  
DEGALA DIVYA PRIYA ◽  
MAHALAKSHMI . ◽  
MAHENDER REDDY CHILUKALA ◽  
BETHALA PRAVALLIKA

Centralised Cloud computing is having many challenges with the rapid increasing in IoT( Internet Of Things) applications. The challenges are high latency, low spectral efficiency (SE), and non-adaptive machine type of communication. In order to solve these challenges have moved to the concept of new computing concept that is nothing but edge computing, which calls for moving the data at the edge of the network. Edge computing has the possible to deal with the concerns of battery life constraint, response time requirement, data safety, bandwidth cost saving and privacy. In this paper, we started the explanation with IoT and solution of IOT i.e. edge computing, followed by several case studies, ranging from cloud offloading to smart home and city, as well as collaborative edge to materialize the concept of edge computing.  


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Kai Peng ◽  
Victor C. M. Leung ◽  
Xiaolong Xu ◽  
Lixin Zheng ◽  
Jiabin Wang ◽  
...  

Mobile cloud computing (MCC) integrates cloud computing (CC) into mobile networks, prolonging the battery life of the mobile users (MUs). However, this mode may cause significant execution delay. To address the delay issue, a new mode known as mobile edge computing (MEC) has been proposed. MEC provides computing and storage service for the edge of network, which enables MUs to execute applications efficiently and meet the delay requirements. In this paper, we present a comprehensive survey of the MEC research from the perspective of service adoption and provision. We first describe the overview of MEC, including the definition, architecture, and service of MEC. After that we review the existing MUs-oriented service adoption of MEC, i.e., offloading. More specifically, the study on offloading is divided into two key taxonomies: computation offloading and data offloading. In addition, each of them is further divided into single MU offloading scheme and multi-MU offloading scheme. Then we survey edge server- (ES-) oriented service provision, including technical indicators, ES placement, and resource allocation. In addition, other issues like applications on MEC and open issues are investigated. Finally, we conclude the paper.


2020 ◽  
Vol 21 (1) ◽  
pp. 6-12
Author(s):  
Javier Pinzón Castellanos ◽  
Miguel Antonio Cadena Carter

Fog Computing is the distributed computing layer that lies between the user and the cloud. A successful fog architecture reduces delay or latency and increases efficiency. This paper describes the development and implementation of a distributed computing architecture applied to an automation environment that uses Fog Computing as an intermediary with the cloud computing layer. This study used a Raspberry Pi V3 board connected to end control elements such as servomotors and relays, indicators and thermal sensors. All is controlled by an automation framework that receives orders from Siri and executes them through predetermined instructions. The cloud connection benefits from a reduced amount of data transmission, because it only receives relevant information for analysis.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3594-3600 ◽  

Big data analytics, cloud computing & internet of things are a smart triad which have started shaping our future towards smart home, city, business, country. Internet of things is a convergence of intelligent networks, electronic devices, and cloud computing. The source of big data at different connected electronic devices is stored on cloud server for analytics. Cloud provides the readymade infrastructure, remote processing power to consumers of internet of things. Cloud computing also gives device manufacturers and service providers access to ―advanced analytics and monitoring‖, ―communication between services and devices‖, ―user privacy and security‖. This paper, presents an overview of internet of things, role of cloud computing & big data analytics towards IoT. In this paper IoT enabled automatic irrigation system is proposed that saves data over ―ThingSpeak‖ database an IoT analytics platform through ESP8266 wifi module. This paper also summarizes the application areas and discusses the challenges of IoT.


Author(s):  
Aayush Jain

As of late, the Edge Computing worldview has acquired significant notoriety in scholastic and mechanical circles. It fills in as a key empowering influence for some, future advances like 5G, Internet of Things (IoT), augmented reality by interfacing distributed computing offices and administrations to the end clients. The Edge registering worldview gives low idleness, versatility, and area mindfulness backing to delay-delicate applications. Edge figuring can possibly address the worries of reaction time necessity, transmission capacity cost saving, just as information wellbeing and protection. In this paper, we present the meaning of edge Computing, trailed by a few contextual investigations, going from cloud offloading to smart home and city.


Author(s):  
Jasjit Singh ◽  
Ankur Kohli ◽  
Bhupendra Singh ◽  
Simranjeet Kaur

Internet has revolutionized the technological era, which has a significant impact on us by making communication much better not only with the living beings but also with non-living things through the medium of internet of things (IoT). Thus, this topic highlights how internet of things can minimize user intervention in controlling home appliances and monitoring its setting. Integrating IoT with cloud computing and web service helps us in providing feasibility in accessing home appliances (i.e., monitoring appliances and measuring home condition). The whole process of integration aims to create an intelligent system. Thus, smart home is one of the application of IoT aimed at improving comfort, safety, and wellbeing within our homes.


Sign in / Sign up

Export Citation Format

Share Document