Nishikaze: Self-Sustained Wind Power Supply Employing Potential Energy Conversion Method

Author(s):  
Fumio Teraoka ◽  
Shinichi Nishiura ◽  
Hiroyuki Ohno
2013 ◽  
Vol 288 ◽  
pp. 172-174
Author(s):  
Jian Bo Xiao ◽  
Wei Gang Zheng ◽  
Yan Su

With the increasingly serious environment pollution and energy shortage problem of further deepening, how to use more effective and more environmental protection equipment of the new energy conversion and utilization of become social the public and the government attaches great importance to the problem. According to the high speed highway car wake contains huge wind, the wind power generation unit born. The vertical shaft by double S rotor, wind deflector, variable speed clutch institutions, centripetal vertical pendulum and low speed generator composition , realized respectively the wind energy collection, transmission, temporary and transformation. This device for wind power generation field provides a more efficient energy conversion mode. Among them, we creatively applied the ratchet, vertical pendulum mechanism so that the wind energy conversion rate has been increased greatly. At the same time, can also solve the highway electric equipment of the power supply problem. This device design makes the highway lighting lamps and other electric equipment of the power supply problem to obtain the very good solve, reduce power facilities installation cost. The effective use of natural wind, expand the scope of the use of wind energy, alleviate energy nervous, also reduce the pollution of the environment.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Julius Mwaniki ◽  
Hui Lin ◽  
Zhiyong Dai

The increase in wind power penetration, at 456 GW as of June 2016, has resulted in more stringent grid codes which specify that the wind energy conversion systems (WECS) must remain connected to the system during and after a grid fault and, furthermore, must offer grid support by providing reactive currents. The doubly fed induction generator (DFIG) WECS is a well-proven technology, having been in use in wind power generation for many years and having a large world market share due to its many merits. Newer technologies such as the direct drive gearless permanent magnet synchronous generator have come up to challenge its market share, but the large number of installed machines ensures that it remains of interest in the wind industry. This paper presents a concise introduction of the DFIG WECS covering its construction, operation, merits, demerits, modelling, control types, levels and strategies, faults and their proposed solutions, and, finally, simulation. Qualities for the optimal control strategy are then proposed. The paper is intended to cover major issues related to the DFIG WECS that are a must for an overview of the system and hence serve as an introduction especially for new entrants into this area of study.


2018 ◽  
Vol 7 (3.5) ◽  
pp. 4
Author(s):  
Valeri Telegin ◽  
Nikolai Titov ◽  
Anatoli Stepanov

Power supply systems for small businesses based on renewable energy sources are most often based on converting wind energy, solar energy and water energy. Calculating its effectiveness is a time-consuming task, requiring the processing of a large amount of data specific for the geographical location of power generating units. In the article the technique of computer modeling of work of a park of wind power plants (WPP) with the purpose of definition of an optimum parity of their parameters is considered.   


Author(s):  
Syafii ◽  
Muhardika ◽  
Darwison ◽  
Witri Onanda

2018 ◽  
Vol 67 ◽  
pp. 01015 ◽  
Author(s):  
Yutaro Akimoto ◽  
Shin-nosuke Suzuki

Fuel cells are a clean and weather-independent power supply. Solar and wind power are widespread in islands that are difficult to supply power. If problems are solved in the future, fuel cells are also expected to become popular. The widespread commercialization of PEMFC stacks depends on their reliability and fault diagnosis. In this study, we developed a degradation diagnosis method for the purpose of improving reliability. The output reduction of the fuel cell is separated into reduction factors called overpotentials. And the factor of the decrease is specified. In this paper, we show the proposed method and the degradation factors, and the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document