scholarly journals Optimal Online Algorithms for Peak-Demand Reduction Maximization with Energy Storage

Author(s):  
Yanfang Mo ◽  
Qiulin Lin ◽  
Minghua Chen ◽  
Si-Zhao Joe Qin
Inventions ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 62
Author(s):  
Mahdiyeh Khodaparastan ◽  
Ahmed Mohamed

Energy storage technologies are developing rapidly, and their application in different industrial sectors is increasing considerably. Electric rail transit systems use energy storage for different applications, including peak demand reduction, voltage regulation, and energy saving through recuperating regenerative braking energy. In this paper, a comprehensive review of supercapacitors and flywheels is presented. Both are compared based on their general characteristics and performances, with a focus on their roles in electric transit systems when used for energy saving, peak demand reduction, and voltage regulation. A cost analysis is also included to provide initial guidelines on the selection of the appropriate technology for a given transit system.


Author(s):  
Wan Syakirah Wan Abdullah ◽  
Miszaina Osman ◽  
Mohd Zainal Abidin Ab Kadir ◽  
Renuga Verayiah

<span style="font-size: 9pt; font-family: 'Times New Roman', serif;">Renewable Energy (RE) penetration is a new phenomenon in power systems. In the advent of high penetration of RE in the systems, several issues have to be addressed especially when it involves the stability and flexibility of the power systems. Battery Energy Storage System (BESS) has gained popularity due to its capability to store energy and to serve multiple purposes in solving various power system concerns. Additionally, several BESS can be combined to operate as Virtual Power Plant (VPP). This study will involve the design and implementation of BESS for five potential customer sites for the demonstration project and to be possibly integrated into one VPP system. The study is expected to demonstrate bill savings to the customers with BESS due to peak demand reduction and energy arbitrage savings.</span><table class="MsoNormalTable" style="width: 444.85pt; border-collapse: collapse; border: none; mso-border-alt: solid windowtext .5pt; mso-yfti-tbllook: 1184; mso-padding-alt: 0in 5.4pt 0in 5.4pt; mso-border-insideh: .5pt solid windowtext; mso-border-insidev: .5pt solid windowtext;" width="593" border="1" cellspacing="0" cellpadding="0"><tbody><tr style="mso-yfti-irow: 0; mso-yfti-firstrow: yes; mso-yfti-lastrow: yes; height: 63.4pt;"><td style="width: 290.6pt; border: none; border-top: solid windowtext 1.0pt; mso-border-top-alt: solid windowtext .5pt; padding: 0in 5.4pt 0in 5.4pt; height: 63.4pt;" valign="top" width="387"><p class="MsoNormal" style="margin-top: 6.0pt; text-align: justify;"><span style="font-size: 9.0pt; color: black; mso-bidi-font-style: italic;">Renewable Energy (RE) penetration is a new phenomenon in power systems. In the advent of high penetration of RE in the systems, several issues have to be addressed especially when it involves the stability and flexibility of the power systems. Battery Energy Storage System (BESS) has gained popularity due to its capability to store energy and to serve multiple purposes in solving various power system concerns. Additionally, several BESS can be combined to operate as Virtual Power Plant (VPP). This study will involve the design and implementation of BESS for five potential customer sites for the demonstration project and to be possibly integrated into one VPP system. The study is expected to demonstrate bill savings to the customers with BESS due to peak demand reduction and energy arbitrage savings.</span></p></td></tr></tbody></table>


Author(s):  
K. H. Khan ◽  
M. G. Rasul ◽  
M. M. K. Khan

This paper is concerned with the feasibility study and evaluation of an energy savings opportunity in buildings energy management using co-generation coupling with thermal energy storage. Both the technical and economical feasibility is presented first for the co-generation and then compared with the co-generation using thermal energy storage. On-site co-generation with double effect absorption chiller provides a potential of at least 13% peak demand reduction and about 16% savings in energy consumption. It provides an internal rate of return (IRR) greater than 21% but saving potential is limited by the low demand of co-generated chilled water within the community of the institution. Thermal energy storage coupling with co-generation offers a simple and economically more attractive approach for maximizing the utilization of co-generated chilled water and shows 23% reduction in peak demand and 21% savings in energy consumption. It provides higher IRR, greater than 25%.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1771 ◽  
Author(s):  
Feras Alasali ◽  
Antonio Luque ◽  
Rayner Mayer ◽  
William Holderbaum

The global consumerism trend and the increase in worldwide population is increasing the need to improve the efficiency of marine container transportation. The high operating costs, pollution and noise of the diesel yard equipment is leading sea ports to move towards replacing diesel RTG cranes with electric Rubber Tyre Gantry (RTG) cranes which offer reduced environmental impact and higher energy efficiency. However, ports will require smarter solutions to meet the increased demand on the electrical distribution network due to the electrification of RTGs. This paper aims to highlight the peak demand problem in the two electrical cranes network and attempts to increase the energy saving at ports by using two different technologies: Energy Storage System (ESS) and Active Front End (AFE). This article introduces one of the first extensive investigations into different networks of RTG crane models and compares the benefits of using either AFE or ESS. The proposed RTG crane models and network parameters are validated using data collected at the Port of Felixstowe, UK. The results of the proposed RTG cranes network show a significant peak demand reduction and energy cost saving.


Sign in / Sign up

Export Citation Format

Share Document