Virtual Room Re-Creation: A New Measure of Room Size Perception

2021 ◽  
Author(s):  
Holly Gagnon ◽  
Sarah Creem-Regehr ◽  
Jeanine Stefanucci
Keyword(s):  
Perception ◽  
2018 ◽  
Vol 47 (8) ◽  
pp. 873-880
Author(s):  
Pablo E. Etchemendy ◽  
Ignacio Spiousas ◽  
Ramiro Vergara

In a recently published work by our group [ Scientific Reports, 7, 7189 (2017)], we performed experiments of visual distance perception in two dark rooms with extremely different reverberation times: one anechoic ( T ∼ 0.12 s) and the other reverberant ( T ∼ 4 s). The perceived distance of the targets was systematically greater in the reverberant room when contrasted to the anechoic chamber. Participants also provided auditorily perceived room-size ratings which were greater for the reverberant room. Our hypothesis was that distance estimates are affected by room size, resulting in farther responses for the room perceived larger. Of much importance to the task was the subjects’ ability to infer room size from reverberation. In this article, we report a postanalysis showing that participants having musical expertise were better able to extract and translate reverberation cues into room-size information than nonmusicians. However, the degree to which musical expertise affects visual distance estimates remains unclear.


2013 ◽  
Vol 20 (4) ◽  
pp. 383-401 ◽  
Author(s):  
Hans-Joachim Maempel ◽  
Matthias Jentsch

PLoS ONE ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. e0176115 ◽  
Author(s):  
Aurelie Saulton ◽  
Heinrich H. Bülthoff ◽  
Stephan de la Rosa ◽  
Trevor J. Dodds

2012 ◽  
Author(s):  
Judith R. Mccalla ◽  
Katie E. Chipungu ◽  
Patrice G. Saab ◽  
Amanda J. Countryman ◽  
Erin N. Etzel ◽  
...  

2012 ◽  
Author(s):  
Alexandria Boswell ◽  
Gideon Caplovitz ◽  
Samantha Chuang
Keyword(s):  

2013 ◽  
Vol 22 (3) ◽  
pp. 255-270 ◽  
Author(s):  
Yuki Ban ◽  
Takuji Narumi ◽  
Tomohiro Tanikawa ◽  
Michitaka Hirose

In this study, we aim to construct a perception-based shape display system to provide users with the sensation of touching virtual objects of varying shapes using only a simple mechanism. Thus far, we have proved that identified curved surface shapes or edge angles can be modified by displacing the visual representation of the user's hand. However, using this method, we cannot emulate multifinger touch, because of spatial unconformity. To solve this problem, we focus on modifying the identification of shapes using two fingers by deforming the visual representation of the user's hand. We devised a video see-through system that enables us to change the perceived shape of an object that a user is touching visually. The visual representation of the user's hand is deformed as if the user were handling a visual object; however, the user is actually handling an object of a different shape. Using this system, we conducted two experiments to investigate the effects of visuo-haptic interaction and evaluate its effectiveness. One is an investigation on the modification of size perception to confirm that the fingers did not stroke the shape but only touched it statically. The other is an investigation on the modification of shape perception for confirming that the fingers dynamically stroked the surface of the shape. The results of these experiments show that the perceived sizes of objects handled using a thumb and other finger(s) could be modified if the difference between the size of physical and visual stimuli was in the −40% to 35% range. In addition, we found that the algorithm can create an effect of shape perception modification when users stroke the shape with multiple fingers.


Sign in / Sign up

Export Citation Format

Share Document